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CHAPTER 1
RELIABILITY OF A SYSTEM

1.1 Introduction and System Reliability Definition

Modern life is relied on a large number of types of machines and
instruments. The term “system” is introduced in order to describe more
generally a set of components built in some configuration satisfying one
or more tasks. However, a system designed to accept some inputs and
to derive some desirable outputs in time is accompanied by the uncer-

tainty of its adequate operation which means that a system failure at a
moment in time must be considered quite probable This is what the ex-
perience points out. Many real world examples could be arranged varying
between the simple electrical bulb system and the mostly sofisticated
spacecraft one.

Therefore, for any reason out of our control, a system inadequate
operation may happen at any time and thus problems about our confi-
dence in this system arise. Of course, we would like to measure this con-
fidence. Statistics enables us to do so and it can be done using the concept
of the system reliability, that is “the probability of a system performing
its purposes adequately for the period of time intended under the opera-
ting conditions encoutered” (Radio-Electro’nics Television Manufactu-
res Association, 1955).

Thus, the reliability of a system is a function of the tlme and of the
conditions of its operation. For example, an old in use light bulb is not
as reliable as one that has recently been put into service and, also, a
system is more reliable functioning under normal conditions of its en-
vironment. )

Barlow and Proschan (1965) give a functional formula describing
the reliability of a system, as it has been defined above. For, let the
period of time intended is t (from O to t). The random variable T will
represents the life of the system. For T = t we define a state variable
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X(t) taking the value 1 if the system functions adequately at the time
t and taking the value 0 otherwise. Assuming that adequate operation at
time t implies adequate performance during the perlod of time between
0 and t we can write

System Reliability in [0,t] = Prob(X(t) = 1) (1.1

Thus, we can summarize at this point that:

a) Reliability is a function of time. For example, an almost worn -
out electrical bulb would be not as liable as a new in use one.

b) Reliability is a function of conditions of use or environment. For
example. our electrical bulb is not going to function very reliably if we
hit it with a hammer. ’

1.2 Failure Distributions Related to Reliability

Giving the definition of a system in the foregoing section 1.2 we
have describe it as a set of components. For example, a usual computer
system could be considered as the set of the components: Card Reader
Unit, C.P.U, Line Printer Unit, Disk Drive Unit and Magnetic Tape
Unit. Therefore, in calculating the reliability of a system the failure
distributions of its particular components are of essential interest. Deno-
ting the time to failure of a component with T (T is a random variable)
the failure distributions listed below are very important giving infor-
mation about the component life. 4

a) Probability Distribution of the Time to Failure.

Prob(t = T <t + dt) = f(t)dt, t 20 (1.2)

The function f(t) derives at each time the probablllty of component fai-
ling between the time t and t -} dt.
b) Cumulative Probability Distribution of Time to Failure.

Prob(T =< t) = F(t) = [t f(t)dt, t =0 (1.3)

The function F(t) gives the probability that a component has failed by
the time t. The equation 1.3 gives the function F(t) in terms of the fun-
ction f(t). Conversly, on differentiating 1.3 we find

f(t) = F'(t) (1.4)
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¢) Survival function.
Prob(T > t) =S(t) =1 —F(@{t) = [ ft)dt, t =0 (1.5)

The funection S(t) often arises very naturally, for example in conside-
ring the probability that a component will survive a guarantee period.
One can easily verify that

f(t) = — S'(t) (1.6)

d) Failure Rate.

Prob(t T =t -+ dt /T > t) = r(t)dt — gf% dt (1.7)

Roughly speaking r(t) gives the probability of almost immediate failure
of a component known to be of age t. The fdilure rate r(t) is related to
the survival function via probability distribution f(t)-—formula 1.7—but
a direct relation between them can be derived and it is:

S(t) = exp{— [ r(t)dt 3, t20 (1.8)

The concept of the failure rate is important, both theoretically and in
practice and gives information about the life of a component according
to the behaviour of the function r(t). Thus, constant failure rate means
that the probability of component failing next moment is constant inde-
pendently of the age of the component. Increasing r(t) means that the
same probability increases as the component becomes older. Finally,
decreasing failure rate means that this probability decreases as the com-
ponent age increases. However, this last case is not often occured in
practice.

Figure 1.1 and figure 1.2 illustrate two examples each for con-
stant failure rate and proportional to t one respectively related with
their own survival functions.

1.3 Some of the most common in use Failure Distributions

There exists a variety of families of distributions that could be well
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used in order to describe the life of a component. The listing below con-

tains those theoretical distributions that are often in use in the practical
applications. '

(Constant Failure Rate) .

z=r(t)=)
)
Figure 1.1
2
-(A/2)t
2=5(t)ze (A/2)
Z:?(t):Xt (Proportional to t Failure Pate)

Figure 1.2

a) Exponential failure distribution.

() =ne , A>0 , t

IV
o

(1.9)
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with:
Failure rate r(t) = A
mean w=1/
variance Tat=1/A

Such a failure density appears when the component failures occur
randomly and independently. For example, this is the case of the failure
occurence of certain types of electronic devices.

b) Gamma failure distribution.

f(t) = AAt)=P—1(a)exp(—At) , aA >0 , t 20 (1.10)
with:

. t . ‘
failure rate r(t) = f(t). {1 — f ' f(t)dt } 1 (1.40y
mean po= ar—1 |
variance 6 = A1 Vux

When o = 1 the Gamma failure density gives the exponential one.

¢) Weibull failure distribution.

f(t) = Aat>"lexp(—At®), Ax >0 t =0 (1.11)
with:

failure rate r(t) = Aate—?

mean p=A"11+ 1/x)

For a = 1 we again find the exponential distribution from 1.14. The Wei-
bull density will be a suitable model for a situation in which all com-
ponents on test fail around the same time.

d) Modified extreme valug failure distribution.
' et—1 ‘ .
f(t) = A—lexp( — — +t) , A>0, t20 (1.12)

with:
failure rate r(t) = A2t
15
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e) Truncated normal failure distribution.
_ —1 ___ (t - 9')2
f(t) = (xo4/2m)lexp { g }, ou>0, t20 (1.13)

where o is'a normalizing constant and the failure rate is calculated using
& formula similar to the formula 1.10'.

f) Log-normal failure distribution.

1(t) = (to+/2m)texp{ — (20" (logt —pJ*}, ¢ >0, g >0, t 2 0]
(1.14)

with failure rate being calculated by the formula 1.10'.

. All densities a) to e) possess a monotonic failure rate (either increa-
sing or decreasing) and therefore can be considered suitable for handling
failure rate data due to wear and tear. Log-normal, in the other hand,
has a non-monotonic failure rate which possesses a maximum value,
decreasing then to zero and for this reason it is not a good distribution
for representing failure data.

For the purposes of the present work the component reliabilities
of a complex system are assumed known and it will be valid everywhere
‘in the subsequent pages.

1.4 System Reliability Calculation

Before passing to the discussion of the main subject of this work,
which is the reliability improvement,.a review of the techniques for re-
liability calculation of various types of systems in terms of the given
component reliabilities is of practical interest. :

‘Whatever the patricular system under consideration it is assumed
that its components fail independently subjected to their own réliability
laws.

'4.4.1 Series and Parallel Sysiems

Consider a system consisting of k components and we assume that
the failure of at least one component causes the failure of the entire sy-
stem. Such a system is called «series - system».
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Relating the electrical current flow through a series - electrical-
circuit with the reliability flow through the components of a series -
system, we can easily see that a similar to the first case network could
be drown in order to give a graphical representation of the second case.
Thus, for every series - system a reliability network is associated dis-
cribing the logic of failure of this system. The figure 1.3 illustrates a
k-component series system. :

Figure 1.3

Given the reliabilities p;, i = 1, 2,..,k of the particular components
(that is the probabilities of the component survival during a specified
period of time, assuming that at t = 0 all components are new) we can
calculate the over-all system reliability in terms of the component reli-
abilities using simply the probability multiplication law:

X
R— lp—H(t—aq) (1.15)

where q; = 1 — p; are the component unreliabilities.

Let us now consider another situation in which the configuration
of the system is such that it fails if and only if all the components fail.
This is what we call “parallel-system” and in a similar to series systems
way its reliability logic can be represented by a reliability network as it
is illustrated in figure 1.4 corresponding to an n-component parallel-
system.

Given the reliabilities p;, j = 1, 2,....n of the components of an
n-component parallel-system we calculate the probabilities q; = 1 — p;
of the component failures; consequently, by the probability multipli-
cation law, the probability of the entire system failing is

=(d—p)= 1
Q= Tl—rp)= Taq (1.16)
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and therefore the over-all system reliability is:

R=1—I(—p)=1—Tg 1.17)
=1 . i=1
l,
2

Figure 1.4 °

Of particular interest is the case in which all components in parallel have
equal reliabilities. Such a case arises when all compontents are identical,
The formula 1.17 is reduced then to:

R=1—(1—p)p=1—¢g (1.18)
where p is the common component reliability.

1.4.2 Parallel-Series Systems

A simple system, mostly studied in its reliability behaviour, is the
“parallel-series” one which is a series combination of parallel subsystems.
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Figure 1.5 illustrates a parallel-series system structure with k subsystems
(stages) in series and each subsystem i consists of n; components in
parallel.

_""nlL__ —ni_J —[Tr—

Figure 1.5

\ Given the reliabilities p;; of the components ]= 1, 2, ...,n; in each sub-
system i = 1, 2, ..., k we can calculate the over-all reliability taking .

¥

4 n
=1 j=1

~ the reliability of each subsystem i and then

 k k n; : k n,
R=NOR=0{0—0 1—py}=0I (1—1IIqy (1.20)
1=1 1=1 1=1 i=1

i=1

the desirable over-all reliability, where

q;; =1 Pij

is the unreliability of the j*® component in the i'* subsystem.
Of interest is also the special case where all the components in the
subsystems are equally reliable that is when

Pi; = Pi; J = 1a 2a seey Iy
The formulas 1.19 and 1.20 become respectively
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n; n;
Ri=1—1—p) ;=1—q; (1.21)
and
k ik n;
R= H{i—(i—pi) y=ni—q ) (1.22)

The reliability improvement via parallel redundancy going to be discus-
sed in next Chapter is directly related with this situation.

1.4.3. More Complicated Systems

When a system appears in a more complicated configuration a direct
calculation of its rehab111ty, based on the probablhty theory laws, be-

comes laborious.
In such a case an indirect method for calculating system rehablhty

is discussed by Caufman (1972) which is considered more efficient than
the direct one. This method is built on the concept of the “system stru-

-cture function”. ,
In order to define this function for a given, system we introduce the

“component state variables” setting

x; =1 if the i** component functions
x; = 0 otherwise
The structure function depends on the state variables xi,x,,..

x, (if k components form the system) with the requirement to be equal
to 1 when the entire system functions and equal to 0 otherwise, that is:

f(x4,Xg,...,%,) ¢ {0,413 — {0,1} (1.23)

The set {0,1} is assumed to be equipped with the usual real numbers al-
gebra. The way in order to derive an analytical formula for the function
f of a given system is explained below where some general examples are

given.

SERIES SYSTEMS

In such a system it is not difficult to verify that its structure
function f(x,Xg,...,x,) must be equal to 1 if the state vector (xy,Xs,...,X)
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equals to (1,1,...,1) and O otherwise. One can immediately derive the
formula of the function f to be

k

f(x1,Xg50ee3Xg) = Xq.Xg...Xg =1£I1xi (1.24)

and to justify that this function equals to 1 when (x;,Xy,...,X;) =
(1,1,...,1) while it is zero otherwise.

PARALLEL SYSTEMS

In this situation we are looking for a function f taking the value O
when the state vector equals to (0,0,...,0) and taking the value 1 other-
wise. A function verifying this requirement is

k
£(Xq,XgyeensXy) = 1 — I (1 — x;) (1.25)
i=1

PARALLEL-SERIES SYSTEMS

Another system configuration in which it is rather easy to calcu-
late its structure function is that of a parallel-series one. Combmmg the
formulas 1.24 and 1.25 we obtain the structure function of such a system
(illustrated in figure 1.5) which is:

k Comy
f(X117"'7X1n17"'7xk11"'7xknk)‘ = 1I—_I1 {t —-3131(1 —xy)} (1.26)

SERIES - PARALLEL SYSTEMS

This is the situation illustrated in figure 1.6 representing a system
copsisting of k series subsystems in parallel. Each subsystem i contains
n; components in series. For this system we can calculate its structure
function and it is: '

k n,;
(3 Xtng o ity ) = 1 — 1L (1 — M xy) (1.27)

Note that the component state variables x;; in the formulas 1.26 and
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1.27 have been defined so that x;; = 1 if the j** component of the i‘®
subsystem functions and x;; = 0 otherwise. :

— 1 e — ] f—. ... ’
T

1 f—ei0. o— j F*iie—4 n

Figure 1.6

Having on hand the structure function of a certain system we can
achieve its reliability in terms of the component reliabilities following
the steps of the procedure below:

PROCEDURE 1.1

a) Reduce the structure function in its polynomial form performing
the operations denoted in it. ’

b) Set x*, = x; (since x; = 0 or 1) for every « = 1

¢) Replace the component state variables x; by the component re-
liabilities p;. The resulted expression of p; gives the desirable system
reliability in terms of the component reliabilities.

Kaufman (1972) gives a number of numerical examples of this pro-
cedure. In the general nature examples presented in subsections 1.4.1 and
1.4.3 the system reliabilities have been derived on the basis of the pro-
bability laws. Alternately, we obtain the relevant formulas 1.15, 1.17
and 1.20 from the structure functions 1.24, 1.25 and 1.26 respectively
setting directly p, in the place of x; since no power x*; is going to appear
performing the operations. Similarly, we obtain the reliability of a paral-
lel-series system from the formula 1.27 and it is:

k n; k n,
R=1—1I(1 -—jII p;;) =1 —1111(1 ———jl'l1 {1 —qy}) (1.28)
=1 = =

i=1



CHAPTER 2

RELIABILITY OPTIMIZATION

2.1 Introduction to the Redundancy

A certain system consisting of a given number of components posses-
ses a reliability level depending on the réliabilities of its particular
components.

In Chapter 1 the general methodology of calculating the system re-
liability in terms of the component reliabilities has been discussed. In
the present Chapter a theoretical review is gomg to be presented giving
an answer to the following problem:’

PROBLEM 2.1

“If the system reliability is regarded too low'for our aims under
consideration what can we do in order to improve it? What are the effects
on the system reliability and on certain cost functions related with it
if a change of the system configuration is made in order to obtain hlgh-
er reliability level?”.

An obvious answer to the first part of the problem is to use com-
ponents of greater reliability. However, there are particular situations
in which the effects of such a technique on the over-all reliability may be
regarded very poor. In some other cases the component reliabilities are
not under our control. Gordon (1956) gives an idea of the poorness of
the effects on the system reliability when we increase the component
reliability. He considers an original series system consisting of k com-
ponents whose the reliabilities are taken to be equal to each other, say
p- Thus the over-all reliability is given by the formula 1.15 which in this
case is reduced to

R = pt | @1
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The function p* (since 0 <p <1) tends to zero when k becomes large
Thus taking k to be large the component reliability must be very close
to unity if the system reliability is not to be regarded so low that the
system is worthless.

In addition to poor effects on the over-all reliability, higher com-
ponent reliability could require a higher component production cost
or increase the component weight, volume, e.t.c. and the balance between
higher over-all reliability and higher cost functions may be regarded un-
satisfactory.

According to what has been up to now discussed, the system relia-
bility improvement via higher component reliability is not the best way
in many cases. A more convenient method that is not related with the
component reliabilities but with the number of components in the sy-
stem is what we call “Redundancy”. With this technique spare compo-
nents are added to each basic component of the system in such a number
that increases the over-all reliability to a desirable level.

Redundancy can be applied in two ways:

PARALLEL REDUNDANCTY

To each basic component a number of n similar spare components
is added and all n + 1 components af the system operate at the same
‘me. :

STAND-BY REDUNDANCY

To each basic component a number of an similar spare components
is added. Only one component is in function at a time while a spare
component is put into operation as soon as the functioning one fails.

This work on hand deals with the application of the multiobjective
programming techniques on the problem of parallel redundancy opti-
mization. Therefore, the parallel redundancy effects on the over-all
reliability is the main subject of the subsequent sections. However, most
of which is discussed in the next pages is applicable to stand-by redun-
dancy as well, if some changes on the calculation of the over-all reliabity
are made.

2.2 Parallel Redundancy Effects on the Over-all Reliability

According to the definition of the parallel redundancy, given in the
section 2.1, the set of one basic component i and the spare ones n; could
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be regarded as a pai'allel type system whose all n; 4 1 components are
identical possessing equal to each other reliabilities, say p. Therefore
the reliability of this set is calculated by the formula 1.18, that is:

n,-+1 n; 41
Ri=1—(1—p) =1—q (2.2)

Assumming n; to be independent variable, the reliability function
Ri(p,n,) is represented by a single—parameter family of curves on the
(R;,n;)—plane and its bahaviour is illustrated in the figure 2.1. Clearly,
as the component reliability increases, the number n, of the redundant
components in parallel decreases when the over-all reliability remains
fixed. Solving the equation 2.2 with respect to n; we express the number
of redundant components as a function of the given component reliabi-
lity and a specified over-all reliability R;, that is:

n, = [1 log(1 — Ri)J

™ log(T — p) (2.3)

where [x] denotes the biggest integer less than x.

Consider now the entire system consisting of k basic components
in series. Let py,p,,...,px be the reliabilities of these basic components.
Thus the system reliability is:

k
R’ = II p, (2.4)
i=1

Parallel redundancy can be applied to this system in two different
ways. Firstly, we can duplicate the entire system in a sense illustrated
by the figure 2.2. A new system is then obtained and its overall reliability
is calculated using the formula 1.28, that is:

k
R'=1—(1—R»2=1—(_—1p,)> (2.5)
i=1

It is clear that
R’ > R’ : (2.6)
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and in this way we reach a higher over-all reliability duplicating the
entire system.

100
~ I I l l !
o
2 90 —
o
—
o
2 _
‘a 8 p=.6
o p=.5
170 p=.4 —
60 -]
50 I
wol | 1L
0 1 2 3 4 5 6 7 8
Number of Redundant Components
Figure 2.1
l 2 * s 8 k
hSa— )
1 5 cen K
Figure 2.2

Secondly, we can duplicate the particular system components obtaining

herefore a parellel-series new system of which the configuration is il-
ustrated in figure 1.5. Thus the over-all reliability of this system is
given if we set in the formula 1.22 n; = 2, that is;’
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k
R = I {1 — (1 —p))*} @7)
Comparing now R’ and R’, as it has been do~ first case, we see

that:

p; > pi? or
pPi <2p;—p% or
pi<1—({1—p;)? or

k k
Op; <II {1 —(1—py?}
1=1 1=1

which means that:
RIII > R', (2'8)

that is, the original system reliability has been again improved. Final-
ly, between the two methods of applying the parallel redundancy, being
described above, the second one is the most effective since from 2.4 and
2.6 we can find:

- R >R | | (2.9)

while all cost functions (ie system cost, weight, e.t.c.) related to the
system remain unchanged.

The result from the previous comparison, that is duphcatmg each
system component is more effective than duplicating the entire system,
is of a more general application valid for any type of original system
even though it is not a series one, as it was before. This is what Kauf-
mann, Cryon and Grouchko (1969) and Kaufmann (1972) point out.

2.3 The Problem of Parallel Redundancy Optimum Allocation

, Lt the original system be one consisting of k basic components.
Let - \

p' = (n17n277"'7nk) (2.10)

be the vector whose the entries n; = 0,1,2,... represent the number of
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the redundant components added to each basic component i = 1,2,...,k.
Thus the over-all reliability is a function

-z = R(n) = R(n,,n,,...,n,) (2.11)

which is increasing with respect each n; assumming the basic component
reliabilities p; to be fixed. This means it is possible to make the system
reliability as high as it is desirable adding redundant components.

It is clear that any redundant component added to the basic compo-
nents of the system increases the system cost and/or weight and /or
volume e.t.c. together with the over-all reliability. Generally speaking,
a system reliability increasing causes changes to some cost functions re-
lated to. Let these cost function be:

hy(n) = h;(n;,n5,...,0,) (2.12) .

for j = 1,2,...,r. Since these resources are normally limitted by upper
bounds the over-all reliability cannot be as high as we would like. An
of the erliest and mostly izhportantlproblem in the reliability theory is
to find the optimum redundancy allocation, that is the allocation giving
the maximum value of the over-all reliability subject to limitations on
the cost functions. ‘

In terms of mathematical programming this problem is stated as
follows:

maximize: z = R(n)
subject to: hy(m) < b;, j=1,2,..,r (2.13)
n, = 0,1,2,...

A wide number of various observations of this problem are made and
a similar number of solving algorithms has been developed according
to particular assumptions, definitions and the methodology which is
followed. ,

The crucual points making differences between the particular cases
of treating the problem 2.13 could be listed as follows:

i) The type of the original system which may be a series one or of some-
other configuration.
ii) The number of cost functions being 1 or 2,... or r.
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iii) The type of the cost functions h; which could be linear or not.

iv) The particular area of mathematical programming in which the pro-
blem of redundancy optimization is embeded, say Dynamic Pro-
gramming, Integer Programming, Geometric Programming, e.t.c.
In the subsequent sections of this Chapter a theoretical review of

the methodology followed in solving the problem 2.13 is discussed. This

discussion will be restricted in the presentation of the various solving
algorithms where they are not of particular interest through the pages
of this dissertation. However, a detailed description will be neccessary

~ in presenting the algorithms that are going to be applied in Chapter 3.

2.4 Reliability Maximization under Constraints
2.5.1 Series Systems; Single Constraint

A first treatment of the problem 2.13 with a single constraint, r = {,
for series systems has been developed by Moskovitz and McLean (1956)
and Mine (1956) using Lagrange multiplier method. In applying this
technique the variables n; are assumed to be continuous, but they actu-
ally take only integer values. The obtained solutions are therefore ap-
proximated. : ,

Bellman and Dreyfus (1962) give a Dynamic Programming appro-
ach to the same problem where the single constraint represents a linear
cost function. In mathematical terms the particular problem solved by
the authors is the following:

k n;41
max'imize: R(n) = i1;11 1—aq )

k
Subject to: Xen; < b
i=1

n; = 0,1,2,... for all i =1,2,...,k

where ¢; is the cost of one component of type i, n; is the number of re-
dundant components added to the basic component i. The set of all
n; + 1 identical components is called “stage i”. Finally, b is the budget
that the total redundancy cost cannot exceed. The relevant reccurence
equation is:
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f1(b) = R([b/e:]) (2.15)
fy(b) = max {Ry(ny) - f(b — nnen)}, N =2,3,...k (2.16)
Ny

where fy(b) represents the value of the objective function R(n), obtamed
using an optimal policy while

nyey S b ' (2.17)

Ry(ny) is the reliability of the stage N if ny redundant components are
added and [x] denotes the biggest integer less than x.

Barlow and Proschan (1965) describe an algorithm solving the same
problem based on the concept of the undominated redundancy allocation.
This procedure (refered as “procedure 1” by the authors) generates a fa-
mily of “undominated allocations”, that is each member has the property
that any other allocation giving higher reliability than a member under
consideration must need higher cost. In the strict mathematical notation
an undominated redundancy allocation is defined as follows:

n is undominated «<——— for every n’ # n then, (2.18)

def
k k

Rn') > R(n)— X ¢ > X ¢n; and,
1=1 1=1

k k :
R(n) = Rn) —»>Z ¢n’ =2 T oy
} : i=1 1=1

The relevant algorithm generating undominated allocations is the
following:

ALGORITHM 24 (Procedure 1)

a) Start with the cheapest cost allocation 0 = (0,0,...,0) which is always
undominated.

" b) If the present allocation is n obtaln a next allocation n’ by adding
one component to the stage i for which the quantity:
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1
= {logR;(n; + 1) —logR;(n;)} ‘ (2.19)
C;
becomes maximal. This means that we add one component to that
stage i for which the over-all reliability increasing per unit of money
spent is maximum.
c) Repeat the step b) until a specified cost bound is exceeded.

The main disadvantage of this procedure is that it derives an incom-
plete family of redundancy allocations, as it is emplasized by the authors,
and this family contains undominated members under the additional con-
dition that logR(n) must be concave. In the particular problem 2.14 in
which we are interested in the present subsection this requirement is
valid since

M=

logR(n) = logR;(n;)

1i=1

and since the considered system is a series one we have

n;+1
logR;(n;) = log(1 — q; )

for all i = 1,2,...,k, which means that logR;(n;) are concave and, there-
fore, logR(n) is also concave.

‘ In order to obtain a complete family of undominated redundancy
allocations for the same problem 2.14, Kettelle (1962) has developed an
algorithm based on the Dynamic Programming formulation. This pro-
cedure derives undominated redundancy allocations for larger sub-
systems from undominated allocations for smaller ones. A step-by-step
description of this algorithm could be stated as follows:

ALGORITHM 2.2

a) Consider the subsystem consisting of the stages 1 and 2 only.
b) Start with the first undominated allocation (0,0) for this subsy-
stem (1,2).
¢) Obtain the next undominated redundancy allocation choosing
the cheapest cost allocation with reliability no lower than the one just
achieved. If there exist two allocations of identical cost choose the one
16
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with the highest reliability. If there exist two allocations with identical
cost and highest reliability choose the one with the lowest component
index. If the present allocation is at the intersection of the row i and
column j search for the next allocation may be confined to the union of
rows 1,2,...,i and columns 1,2,...,j, where j is the number of redundant
components in stage 1 and i the number in stage 2.

d) Repeat the steps a) to ¢) for the next subsystem (2,3) cons1st1ng
of the stages 3 and 4 only.

e) Repeat the steps a) to ¢) combining the two subsystems (1,2)
and (3,4). Thus, a complete family of undominated redundancy alloca-
tions for the subsystem (1,2,3,4) has been achieved.

, f) In this way, obtaining a complete family of undominated redun-

dancy allocations for the next two-stage subsystem and. combining it
with the subsystem achieved just before, we can derive a complete faml-
ly of allocations for the entire subsystem.

A schematical representation of such a subsystem combination for
a six-stage original system is illustrated in figure 2.3.
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2.4.2 Series Systems; Multiple Constraints

In this case, with the additional assumption that there are only
two constraints, say linear cost and linear weight, Bellman and Dreyfus
(1958) have developed a Dynamic Programming procedure combined
with Lagrange multiplier method in order to solve the following problem
in mathematical terms:

k n;+1
maximize: R(n) =xl=-[1(1 — & ) (2.20)

k
Subject to: Zeym =c¢ym) = b;, j=1.2,.r
1=1 . _

n, = 0,1,2,... . i=12..k

for r = 2, where ¢ and ¢ip are positive numbers representing the cost
and the weight of the i*® component in the stage 1 and 2 respectively.
Setting now: '

n;+1
Ri(n)) =1—q;

N ‘
fn(by) = Isnaxll__-_ll {Ri(n;) . exp(—Acyen;) }
N

where Sy is the set of solutions defined by the constraints in 2.20 and A
is a Lagrange multiplier such that the weight constraint is satisfied,
an easy in calculations forward reccurence equation is obtained:

f,(b;) = max Ry(n,) . exp( — Acyeny)
.y

fx(b,) = max {Ry(ny) . xp( — ACnaliy) - fn-1(by — eyynn)} , N 2 2
N
The maximum in the later formula is taken over all ny such that:
0 = ny S [by/en]

For various values of A we calculate solutions to the problem 2.20 choos-
ing that gives the highest weight less than b,.
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Another approach to the problem 2.20, -given in its general form
with r linear constraints, is refered by Barlow and Proschan (1965). Two
different procedures (called “procedure 1 for multiple cost factors” and
“procedure 2” respectively) are discussed both generating undominated
allocations for.the problem 2.20. In a similar way to the section 2.4.1
the definition of an undominated redundancy allocation when multlple
linear cost factors are involved is stated as follows:

n is undommated «<——> foreveryn’ # n  then, (2.21)
def

R(n’) > R(n) — c¢;(n’) > ¢;(n) for at least one j °
R(n’) = R(n) — ¢;(n’). > cy(n) for at least one j or
¢;(n') = c5(n) for all j =1,2,..r

where the expressmn of the cost factors cj(n) is given in the problem
2.20. On the basis of this deflnltlon the two algorithms described below
derive families (generally mcoplete) of undommated redundancy alloca-
tions for the problem 2.20. '

ALGORITHM 2.3 (Procedure 1 for multiple cost factors)
' a) Start with the cheapest allocation (()A,O,...;O)rwhich ‘is always
undominated. o '
b) Obtain a next allocation by adding one component to the stage
1 for which the quantity:

— (2 oyt JogRin, + 1) —logR(n)} (2.22)
i=1 7] ' o ,

is maximum, where «; are non- negatlve real numbers summmg to unity.
¢) Repeat the step b).
The meaning of the step b) is that we add one component to that sta-
. ge i for which the rate of the over-all reliability increasing and a linear
convex combination of the corresponding cost factors to be maximum.
The quantities «; are chosen in the interval (0,1) and to each vector
a= (oy,%s,...,%,) one family of undominated allocations is corresponded.
If we repeat the algorithm 2.3 for various vectors a, say starting from
the vector (1,0,...,0) and proceeding until the final vector (0,0,...,0,1)
varying the «; by some fixed increament A, we obtain a wider family.
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Even if all the possible vectors a have been taken the family resulted
in this way is still incomplete.

ALGORITHM 2.4

Let A = (Ay,..-,A;) be a vector of which each A; = 0 and at least one
%; > 0. For i ==1,2,... .k obtain n;(A) as the smalest integer m satisfying
the inequality:

r
logR;(m + 1) —logR;(m) < X Ajey; (2.23)
ji=1

This procedure, and the foregoing one, generates an incomplete family of
undominated allocations (since logR(n) is concave in the problem 2.20).

Proschan and Bray (1965) have developed a generalized Ketielle
algorithm in order to treat the problem 2.20 in its general case, ie when
r cost factors are involved. ‘

Fedorowitz and Mazumdar (1968) use Geometric Programming
Techniques in order to solve the problem 2.20. The corresponding Geo-
metric Program is obtained setting:

.

. 1
xX;=e

and

Ing;

1 —x; =

for i = 1,2,....,k, and it is:

k .
minimize f(x;,z;) = Mz (2.24)
=1
Ing; '
subject to z; 4+ x; =1, 1=12..k
- —Db; Ci;
e . x;, =1, j=12,..r
i=1

x;,z; 2 0 for all i
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Mizukami (1968) considers the same problem setting:

k k n;+1
»(n) = logR(n) = X logRin) =3 logd —q; )

Since the functions R,;(n;) are concave the function z(n) is concave
separable. Maximizing R(n), as the problem 2.20 requires, is equivalent
to maximize z(m). Therefore, the following concave programming for-
mulation is equivalent to the original one:

maximize : z(n) = )_3 (1 — q; ) (2.25)

k
subject to: X ¢;n; £ b;, j=12,.r
i=1

n; = 0,1,2,... for all i
“This concave program is equivalent now to the following Linear Program:

k

maximize: z =X y; (2.26)
i=1

subject to: y; £ Aun; + w, - 1= 1.k, s =1,.,1

k
2 Cijni é bj y j == 1,2,...,1‘
1=1

n; = 0,1,2,... for all i
where,

ksl = {R(nls) - Ri(nhs-l)} / (nis - ni’s-l)/

e = {0 Ri(n;0-1) — ny,5-1 R(056) } /(055 — Njy5mq)
and ’

11,0 gy.0051)

are given values of n,.

Ghare and Taylor (1969) convert the problem 2,20 into a multidi-
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mentional Knapsack problem. The authors prove that the problem 2.20
is equivalent to.the program:

. k o«
maximize : z =X X oiXy (2.27)
i=1 1=1
k o« :
subjectto: & X ¢yx,;, =d;, j=12,..r
i=1 1=1 :

x;=00r1

where x; = 0 implies x;, = 0 for all m > 1, o« = In(l — q!*t) —
(1 — q) '
nd

k

i=1

A modified branch and bound algorithm developed by Ghare and Walters
is used in order to solve the program 2.27.

2.4.3 More complicated Situations

Jensen (1970) considers the problem of optimum redundancy design
for a series original system duplicating not each system component  but
duplicating the series subsystems in whlch the system can be subdivided.
If this is made a “series-parallel-series” redundant rehablhty network
is resulted, an example of which is illustrated in figure 2.4. In this exam-
ple the original system (1,2,3,4,5,6) is divided into three subsystems
(1,2), 3, (4,5,6) and the first and third ones have been duplicated while
the second one has been tripled. In general, a redundant des1gn is defined
by a set af triplets:

D = {(inisny)s (iaieshe)ss(ioicne) }
In the example of the figure 2.4 we have:
D = {(1,2;2), (3,3:3), (4,6:2)}

A dynamic programming formulation is developed in order te solve the
prohlem which is in mathematical terms;
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maximize R(D) = II R(i,j;n) (2.28)
(.j;n)
1 3 [
uu—— - }— —
1 2 3 y 5 6
1 2 3 4 5 6
Figure 2.4

Finally, Hendrix and Stedry (1974) work on the following problem:
“Given a basic component system design with r goals and k components
and given a wealth constrain w, it is desirable to determine n = (n,,...,
n,), where n; is the number of identical components of type i, in order
to maximize:

T
R=2ZX2 r,Q

i=1

where R is the expectation of total reward, r; is the reward associated
with the goal G; and Q; is the probability that the goal G; will be met,
subject to

k
2 oen =W

i=1

where c¢; is the cost of one component of type i”.

2.5 Cost Functions minimization under a Reliability Constraint

So far, in the section 2.4 we were occupied with the problem of a-
chieving maximum reliability via parallel redundancy given cost-function
constraints associated with the number of redundant components in the
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system. This problem means that some upper bounds for the system cost,
weight, volume, e.t.c., has been already specified and we are seeking
for the redundancy vector n maximizing the over-all reliability. But, in
applying this methodology to particular real life problems, the resulted
maximum over-all reliability could be regarded very poor for our aims.
An obvious solution to this later problem is to increase the bounds in the
cost-function constraints and then to solve the maximum reliability
problem from the beginning or to find a new solution of the basis of the
past one by sensitivity analysis. _

An alternative method is to consider the “inverse of the maximum
reliability problem”, that is the problem of simultaneously minimizing
the cost functions related with the redundant vectors. while maintaining
the over-all reliability at some desirable level.

In the case of one cost function only Kettelle’s algorithm as well
as Barlow and Proschan’s one, both refered in section 2.4.1 as algorithm
2.1 and 2.2 respectively, could be applied for solving the inverse of the
maximum reliability problem in this case, which is in mathematical
terms:

k .
Minimize : ¢(n) = X ¢;n; (2.29)

k n;+1
subject to: R(n) =11 (1 — q; )z L
i=1

n; = 0,1,2,... for all 1

It is sufficient to seek for that member of the redundancy allocation
family, generated by these algorithms, corresponding to a reliability
level higher than L but, it cannot be said for the case of multiple cost
functions. ]

' Tillman and Liitswager observe a certain objective function of re-
dundancy allocations to be optimized while a set of constraints (linear
or not) must be satisfied and the over-all reliability must exceed a desira-
ble level. Speaking in mathematical terms the solved problem is stated
as follows:

k
Optimize : z(n) = X fi(n;) (2.30)
.i=1
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- k
Subject to: T gy(n) =b; , j=12,..r
i=1

'k n+1-
11-;[1 (1 T et )

v

L
n; = 0,1,2,... for all i

Where z(n) is the objective function of the system to be optimized,
f,(n,) is the objective function at stage i, g;;(n;) is the amount of the j**
‘resource consumed at stage i. An integer programming formulation of the
problem 2.30 is made giving the optimum redundancy allocation:

k nl' \
Optimize: z = X Z AfjaDi. - (2.31)
i=1 m=0
k n

Subject to: B X Agyalim S by, i=12,.r
0

1=1 m=

k' nl' nim_*-1

> X Aln(l—q;, )=hL
i=1 m=0 S

nio = 1

Nym — Dyym—1 s o
n;, =20 foraliand m

where m is an index used to denote a particular redundant component at
the stage i, n;,, is the m*® redundancy at stage i with n;,, = 1 form = n;
and n,,, = 0 for n; < o < n;(n,’ is the maximum number of redundant
units used at stage 1),

n/
ni:—— 2 n.

im
m=]1

is the number of redundant components at stage i, Af;, = fi — fiym—
with Af,, = f;, and Agijm and
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: nim"}_1
Aln(i — qim )

are similarly defined. The particular problems solved by this method are
a) Maximize Reliability subject to multiple linear cost function const-
raints, b) Minimize cost subject to multiple non-linear and separable
restraint functions while maintaining an acceptable reliability level and
c¢) Optimal choise of design for parallel redundancy system.

The general situation of minimizing several cost function simulta-
neously while maintaining the over-all reliability over a desirable level
is of our interest in the next Chapter 3. It seems that Multiobjective
Programming Techniques could be applied in order to give an answer
to this problem.



CHAPTER 3

MULTIOBJECTIVE TECHNIQUES IN PARALLEL REDUNDANCY
ALLOCATION
3.1 Multiobjective Programming Methods

Practitioners and Theorists enganged on real world problems for
decision making feel that in a large number of situations several objecti-
ves should be simultaneously considered.

In such problems what it is desirable is a vector

X = (Xlaxza"'7xk) (3.1)

where x; are non-negative real numbers and the vector x must simultane-
ously optimize (maximize or minimize) » ~eal-valued functions:

fi(x) = fi(X10-0%i) (3.2)

Without loss the generality we assume the r functions f; to be minimized
A set of restraints:

h (%) = h, (X1, Xgyee0Xy) S by, m=12,..1 (3.3)
define a set

Ck < Rk (3.4)

of all feasible vectors x that are regarded to be candidate solutions.

. We note that the requirement of this problem, namely the simul-
taneous minimizing of all objective functions is hardly met in practice.
For example in a transportation problem we would like maximize the
transportation velocity and minimize the transportation cost at the same
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time. Clearly, it is very difficult to obtain both since any increasing in.the
velocity implies higher cost. How can we overcome this difficulty?

Eilon (1972) suggests a variety of methods that could be applied
giving efficient solutions that balance the optlmum values of the objecti-
ves around a tolerable level.

To do this it is neccessary to compare the values of the objective
functions not separately but simultaneously. In other words, weneed
compare the various vectors

(£(%), f5(x),...,f (%)) (3.5)

with each other. This is essentially the basic idea of the following ma-
thematical formulation of the multiobjective problem stated in the
beginning of this section {Bod (1963) and Rudeanu (1969)}.

Minimize : F(x) = (f;(x),f(x),...,f (x)) (3.6)
Subject to: h(x) £b,, m=1,2..]
0

1%

X1,Xg40009Xg

where F(x) is a vector-valued function taking values in Rf, that is
P(x) £ R ’ .
and its entries f;(x) are r real-valued functions.
Saying “minimum of F(x)” means the existence of some relation de-
fined on the field fo values Rr of the function F(x), denoted by the
symbol <, on the basis of which two any values F and F in the set R*
will be comparable to each other. ‘
One may define in R any relation in order to compare its elements
with each other, but the most common in use ones, related to the real-
life situations, are the following:

RELATION VIA A UTILITY FUNCTION

It is defined as follows:
(f1,--f) = &/, 1) iff  Uf,,.. f) = U{E/,.. 1) (3.7)
Where the function

U:R"—>R . (3.8
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is a real-valued “utility” funetion, non-decreasing with respect to each
function f;, } = 1, 2,...,r. For example, in the case of two objectives on-
ly, the function U could be chosen as the fractional form:

Ulhf) = 58, L) <0, £, >0

or it could be chosen as the additive utility function:
_ , b, b,
Ulfy,fe) = w, {fi(x)}  + ua{fa(x)}
commonly used in the theory of consumer’s choice, where u,, u,, b; and
b, are positive and f, and f; > 0 for all x.
Thus, considering U as afunction of the vector x in C*, we may
write:

U(fy(x),...,f(x)) = u(x) e R (3.9)
Therefore, any solution of the single-objective program:

Minimize: u(x) - ' (3.10)
Subject to: hy(x) <b,, m=1, 2,.,
X1,Xgy--,Xg > 0

is also a solution of the problem 3.6, the set R* being equipped with the
relation 3.7. To prove it, let x* be an optimal solution of the problem
3.10. Therefore,

u(x*) = u(x) for every x € G-
and so,
U(fl(x*),...,rf,(x*)) = U(fy(x),...,f(x)), for every x € C*. Finally, by 3.7
(£o(%*),.., f(x¥) = (f(%),....f(x)), for every x eC*
which means that x* is also an optimal solution of the problem 3.6.
The “trade-off” method refered by Eilon (1972) can be considered

particular case of the relation 3.7 if we adopt the U to be the weighted
average of the objective functions f;, that is:

T
Ut () ) = B wify(x) = u(x) (3.41)



Multiobjective techniques for optimum parallel Redundancy 261

where the weights are chosen between 0 and 1 and they sum to unity.
The meaning of the weights is that they measure the contribution of
each objective function f; to the “trade-off” function U according to its
importance. The choice therefore of the numbers w; is a particular pro-
blem depending on the real-life problem goals.

LEXICOGRAPHIC RELATION

It is defined as follows:

(f1geeesfy) = (£)500f) iff

f; </ or

(f'=1£', j=12,.r—1 and f, <f’) or
(f; =1 , for all j)

One can’easily verify that the set R* equipped with the relation 3.12 is
a totally ordered set and so, if there exists a mlmmal element F* of the
set F(C¥) it is unique.

“Optimization in tandem” refered by Eilon (1972) is embeded into
this case. The relevant procedure in order to obtain a vector x in C*

minimizing the function F(x) could be described as follows:

*Adopt some preference ordering between the objectives f; accor-
-ding of their importance in the particular problem under consideration.
. Let a decreasing priority be defined by the sequence f,, f,,...,f,.

v *Minimize f; subject to the original restraints. Let the set of its
solutions be C,*; minimize f, over this set. Let G,* be the set of its solu-
tions; minimize f; over the new set, e.t.c. In general, minimize the next
objective function f; over the set Cx;,_; of the optimal solutions of the
immediately previous function f; ; minimized over the set C*_,.

*The procedure will be terminated either when a set of optimal solu-
tions is met containing only one element, or after having minimized the
last objective function f,. In the primer case the solution of the pro-
blem 3.6 is unique while in the later the solutions are all the elements

contained in the last set.

More precisely, the described procedure leads to a sequence of

single-objective function programs as follows:

for } = 1 : Minimize : f;(x) (3.13)
Subject to : h,(x) =b,, m=1,2..,1
XXy 2 0
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for j > 1 : Minimize : f;(x) (3.14)

Subject to s h(x) = b,;,, m=12,...1
fu(x) = f*y, p = 172a"°,j —1

XyppeersXg 2 0

where f,*f,*,....f*,_, denote the minimum values of the functions f(x),
f5(X),-.-,[;—2(X) obtained by the solution of the previous j — 1 programs
3.14.

One easily verify that any solution x* achieved from the sequence
3.14 is also a solution of the problem 3.6, the set R* being provided‘with
the lexicographic relation.

Finally, we note that this method is better than the trade-off one
in that no measure of the objective importance is needed; it is sufficient
simply to say which objective is the most important between the remain-
der ones. In the other hand, the disadvantage of a larger volume of
calculations should be emphasized.

COMPONENT-TO-COMPONENT RELATION

It is defined as follows:
(freenf) = (£ ,00f)  iff £ = ), for all j (3.15)

The set R™ equipped with the relation 3.15 is a partially ordered set
and therefore the set F(Ck), which is a subset of R, adopts several mini-
mal elements (if they exist) being incomparable with each other with
respect the component-to-component relation.

It is no difficult one to see that any optimal element in F(Ck) accor-
ding to lexicographic relation in R” is also an optimal element of the same
set if we consider theset R* to be provided with the component to-com-
ponent relation, but the inverse is not valid. Therefore, applying succes-
sively the procedure described for the lexicographic relation and can-
celling all the vectors in F(C¥) that are comparable to the optimal vector
obtained each time we can find all the incomparable minimal vectors
in F(CK).

Surely, this last relation and its associated procedure is the most
realistic of the three. But the difficulty in the practical applications be-
comes clear looking at the very large volume of calculations.

Rudeanu (1969) has applied the lexicographic and component-to
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component relations in order to obtain the solution of the problem 3.6
in the case of “pseudoboolean” objective functions, that is when the vari-
ables x; are 0 — 1 valued.

The main purpose of the present work is to point out the possibility
of applying the multiobjective methodology in the problem of simul-
taneously minimizing several cost functions while maintaining the over-
all reliability over a desirable level and, even though we introduce se-
veral objectives, any method generating a family of undominated redun-
dancy allocations may be applied at least in the case of adopting the
first of the three relations described before.

In the subsequent sections of this Chapter we are going to prove
it and to show the way of applying, in the trade-off treatment, the Ket-
telle’s and Barlow-Proschan’s algorithms described in the previous
Chapter 2.

3.2 Formulation of the Parallel Redundancy Allocation Problem

The Parallel Redundancy Allocation Problem which is going to be
traeted is the following: ‘

“QObtain the optimum number of redundant components in parallel
at each stage i of a system consisting of k stages in series so that r ob-
jective functions — say system cost, weight, e.t.c. — f;(n;,n,,...,n,) to be
minimized while the over-all reliability R(n,,n,,...,n,) must be main-
tained over a given level”. :

According to what has been discussed, the following explicit formu-
las are availlable:

k E
f,(n) =1§1 ey(ny + 1), j=12,.,r (3.16)
and
k k n,+1
R(n) =‘£Il R‘l(ni) =1£I1 (1—aq; ) (3-17)

where c;; > 0 is the linear cost coefficient of the i** component in the
j** linear cost function f;, q; is the unreliability of a com ponent of type i,
n,; is the number of redundant components in parallel at the stage i and
R;(n;) is the reliability of the stage i.

17
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The foregoing sections of this Chapter lead to.the following mul-
tiobjective programming formulation:

k k
minimize: F(n) =(1=21 culn; + 1),..., 151 ci{n; + 1)) (3.18)

k n;+1
Subject to: R(n) = II (1 — q, )= L
1=1

n; = 0,4,2,... for all i

This last program can be simplified reformating the entries fj(n,
of the vector-valued objective function F(n) to the form:

k k
. =3 =
;(m) Z, oty + 2, o

Since the last term is independent of the n; can be ignored. Thus, any
optimal solution of the problem 3.18 is also an optimal solution of the
program 3.19 described bellow and visa versa.

k k
minimize: F(n) =( El CiTlyeesy !=21 ¢, n;) (3.19)
k n;+1
=L

Subjec to: R(n) =‘l='11(1 —q )

n; = 0,1,2,... for all i
In this program only one constraint is involved, the reliability one.

3.3 Trade-off Application

Choosing some proper weight-vector W = (w;,Wj,...,w,) with entries
between 0 and 1 and summing to unity, we may calculate the trade-off
function for the program 3.19 as follows:

k r .
U(f,(x),...,f(x)) =1=21 j(z:l chij)ni (3.20)
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In applying the trade-off technique to real world multiobjective
problems we have to find the values of the weights w;. Unfortunately,
there is no some general rule to do this since the choise of these values
depends on the particular situation. For example, in a transportation
problem with two goals, namely the transportation cost and the over-
all transportation time, the relative importance of the cost and the time
will depend on the conditions of the particular realistic situation. Since
the choise of w; is strongly related to the priorities of the objectives this
choise depends on the particular conditions of the problem.

B. Roy (1969) in his article “Classement et choix en presence de
points de vue multiples” (that is “Classification and choise with multi-_
ple objectives”) gives some examples of the choise of the weights w;. If,
for example, all the objectives are characterized with an equivalent pri-
ority we may choose w; = 1/r. In the other hand, if the objectives must
be strictly ordered we may set w; = 27 /(21 —1). An intermediate
situation is the choise of the weights for the examination papers where
some papers could be of equal priorities and some other of greater or
less importance.

The function 3.20 is non-decreasing with respect to each f; and be-
ing considered as a function of the redundancy vector n, ie u(n),is a
non-decreasing function of each n;. Therefore, the problem 3.19 is redu-
ced to the following single-objective function program:

k r
Minimize: u(n) =x§1 (El WiCy;) . Iy (3.21)
k n,+1
zL

Subject to: R(n) =£[1 1—aq; )

n; = 0,4,2,... for all i

In this way, the problem of finding the optimum parallel redun-
dancy allocation simultaneously minimizing several cost functions while
keeping the over-all reliability over some level has been reduced to a
problem of finding the optimum allocation minimizing a single trade-
off function under the same reliability restriction.

Any method, included the ones discussed in Chapter 2, solving the
problem of achieving the optimum redundancy allocation that minimize
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a single cost function while maintaining the over-all reliability at some
level (specified or not) can be applied to the program 3.21. Barlow and
Proschan’s procedure for generating an incomplete family of undomina-
ted allocations,as well as Kettelle’s algorithm deriving a complete family
of undominated allocations can be applied to the problem 3.21, and both
generate a solution to the original problem 3.19.

A question arises at this point: “Given some undominated redun-
dancy allocation in the problem 3.21 is it also an undominated one in
the problem 3.19? Is the inverse valid?”.

In order to have an answer to the first part of the question, let n
be some undominated allocation in the problem 3.21. According to the
defition of the undominated allocation (see formula 2.21), for every allo-
cation n’ #* n the following relations are valid.

R(n) > R@m) — u@’) > u(n)
R(n’) = R(n) - u(n’) = u(n)
Since the function U is non-decreasing with respect each f; the statement
u(n’) > u(n) — U(f,(0'),...f(n")) > U(f,@),....f,(n)) ’
implies that there exists at least one j for which f;(n’) > f.(n). In the
other hand the statement:
u(n) = u(n’) - U(f,@),...fi(n)) = Uf,(@'),...,f(n"))
implies either f;(n’) = f;(n) for all j, or there exists at least one j for
which f;(n’) > fj(n) since the relation f;(n’) < f;(n) for all j implies:
Uh(@'),...f(n)) < Ufy(m),...,f(n)) |

which is not true on the basis of our assumption. Summarizing the results
we have find that:

R(n’)
R(n’)

> R(n) — fj(n) > f;(n) for at least one , (3.22)
= R(n) —f;(n’') = f;(n) for all j or
f,n) > f;(n) for at least one j

which meané that the allocation n is also an undominated allocation in

the problem 3.19.

N For every n’ # n the definition 3.22 is valid but it is easy to see

that: i
fi(n’) > f;(n) for at least one j +

U(f,(m'),...,f(n")) > U(fy(n),....f,(n))
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and therefore R(n’) > R(n) does not imply u(n') > u(n) which means
that n is not an undominated allocation for the problem 3.21 even though
it is an undominated allocation in the problem 3.19.

Thus, we have proved the following property:

PROPERTY 3.1

kEvery undominated parallel redundancy allocation in the problem
3.21 is also an undominated one in the problem 3.19. The inverse is not
valid. ) '

3.4 Barlow and Proschan’s Procedure Application

In applying the algorithm 2.1 (Barlow and Proschan’s procedure 1
for a single cost factor) to the problem 3.21 we do not expect a comple-
te family of undominated allocations for the problem 3.19, since this
algorithm derives an incomplete family for the problem 3.21.

Thus we create a new undominated redundancy allocation for the
problem 3.19 by adding one redundant component at the stage i for
which the increasing of the over-all reliability per unit of average “cost”
spent is the maximum. Mathematically speaking, the stage i is that maxi-
mizing the quantity:

r n;-42 n;+1 ‘
= {El wiey ) {log(l — q; ) —log(1 — & )} (3.23)

It is worth to note that, from a computational point of view, we
need the same calculations for solving the problem of obtaining the opti-
mum allocation with minimum several cost functions and reliability over
a given level with those in applying the algorithm 2.3 for solving the
problem of achieving the optimum allocation maximizing the reliability
under several cost constraints.

As a numerical example let the table 3.1 contalns the data of a re-
dundancy allocation problem with two cost functions, say the system
cost and the system weight, for a four-stages original system and a re-
liability level L =.90. We want to find that parallel redundancy allo-
cation with minimum system cost and system weight keeping the system
reliability greater than .90.

Desiring to treat this problem by the trade-off method we have to
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choose the welghts w, for the system cost and w2 for the system weight.
Let :

W = (W, W,) = (.25,.75)

The numbers .25 and .75 are hypothetical being arbritrarily chosen for
. numerical purposes only. If a real world problem were to be solved we
would remind the remark on the weight choice of the section 3.3.

—

Ci1 Cia q;

1.20 5.00 .20
2.30 4.00 .30
3.40 8.00 .25
450 7.00 .45

O R N

Table 3.1

Appendix-I contains a Computer Program creating the family of
undominated parallel redundancy allocations for this problem. The input
of the program is a table of the form 3.1. The output includesthe family
of allocations extending up to the given reliability level (in the present
example up to .99955) and the corresponding trade-off, cost and weight
function values.

-Figure 3.1 represents graphically the results with the over-all re-
liability against the trade-off function.

3.5 Kettelle's Algorithm Applicaiion

The Algorithm 2.2 (Kettelle’s algorithm) generates a complete fa-
mily of undominated parallel redundancy allocations for the problem
3.21 but not for the original multiobjective program 3. 19 as 1t has been
justified by the property 3.1.

Solving the example of the section 3.4 by this method the calcula-
tions are made by two computer programs developed in Appendix-II.
The first program generates a complete family of undominated alloca-
tions for the subsystem consisting of the stages 1 and 2 and, by repeti-
tion, for the subsystem consisting of the stages 3 and 4. The second pro-
gram derives a complete family of undominated parallel redundancy
allocations for the problem 3.21 (being incomplete for the original 3.19)
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combining the two subsystems in order to build the entire system con-

sisting of the stages 1, 2, 3, 4.

Figure 3.2 is a diagrammatical representation of the final family
with the trade-off function against the over-all reliability.
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3.6 Discussion of the Resulis and Conclusions

Before proceeding to a comparison of

the results we note that in ap-

- plying Algorithm 2.1 to the example of the table 3.1 the cost and weight
values as well as the trade-off function values have been calculated in
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order to include their constant initial values, while the corresponding
values in applying Algorithm 2.2 to the same problem do not. Therefore,
in order to compare the results obtained by these algorithms we have to
subtract the initial values from the cost functions and trade-off ones a-
chieved by Algorithm 2.1. '

The figures 3.1 and 3.2 may be used in order to compare the fami-
lies of undominated parallel redundancy allocations derived by both
procedures. Inspecting these figures we see that. Algorithm 2.2 (kettelle)
generates a wider family than Algorithm 2.4 (Barlow and Proschan)
containing a larger number of allocations.

Taking the reliability lewer level to be .90, the Algorithm 2.1 pro-
vides the optimal redundancy allocation (2,2,2,1) with over-all relibility
equal to .92876, trade-off value 34.67, redundancy cost 18.30 and re-
dundancy weight 41.0. Algorithm 2.2 derives the optimal solution
(2,3,11), over-all reliability .901711, trade-off value 32.050, redundan-
cy cost 17.20 and redundancy weight 37.00. Thus the later algorithm ge-
nerates "a cheaper trade-off solution. ‘

Through the pages of this work, the problem of obtaining the opti-
mal parallel redundancy allocation with minimum several cost functions
under a reliability constraint has been treated using multiobjective te-
chniques.

Considering the set of vectors with entries the values of the cost
functions provided with the relation via some utility function, we have
applied the trade-off technique replasing the objectives by their weighted
average. Surely, we may use some other utility function of non-linear
form. In this case Algorithms 2.1 and 2.2 cannot be applied and so we
have to seeking for some other method depending on the utility function
form. '

In the other hand, in the “optimization in tandem”, that is if ‘we
adopt the lexicographic relation, a sequence of single-objective function
programs should be solved with the additional restraint to maintain the
optimal solutions of the predecessor program. Tillman and Liittschwager
(1967) method seems to be convenient for solving these programs.

Finally, in th2 most realistiz sit1atioa of alipsing the comdonent
to component relation, the same methodology may be followed but the
difficulty of a large volume of calculaticns as well as some technical pro-
blems in cdncelling the path leading to a particular minimal vector into
the set of the vectors with entries the values of the objective functions
arise,
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SUMMARY

The present work deals with the problem of allocating to te sta-
ges of a system spare components in parallel in order to improve the re-
liability of this system under several cost-functions.

This problem can be regarded directly, that is to maximize the o-
ver-all reliability under several cost-function constraints (say system
cost, system weight, system volume e.t.c.). Several papers have been
written on this problem using various mathematical programming me-
thods. But also, of interest could be the inverse problem which is to
maintain the over-all system reliability over some safety level and it
must be done with the cheapest several cost-functions. This topic has
been treated by Kettelle (1962) and Barlow and Proschan (1965) in the
case of a single cost-function but multiobjective programming techni-
ques are involved in order to describe and solve the same problem in the
case of multiple cost-functions to be simultaneously minimized.

What the work on hand does is that it considers a systematical
multiobjective formulation of this inverse redundancy allocation pro-
blem based on various relations introduced in the Cartesian space of the
cost-functions, and then solves this problem using the “trade-off” techni-
que,
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