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CHAPTER I

INTRODUCTION

Multiple regression analysis has become one of the most widely 
used econometrical tools for analyzing economic data. The standard 
approach in regression analysis is to use a sample of data to compute 
an estimate of the proposed relationship, and in addition, to evaluate 
the results of estimation using statistics such as t, F and the coefficient 
of determination R2.

The general multiple regression model is written:

y = X β + u 

TX1 TXP PX1 TX1

where X is a TXP matrix of T observatios on P explana
tory variables, y is a TX1 vector of observations on the dependent 
variable, β is a PX1 vector of unknown parameters, and u is a 
TX1 vector of unknown disturbances. The usual method for estimating 
β is the method of least squares which involves minimizing the sum of 
squares of the residuals under certain assumptions, the method of least 
squares has some very attractive statistical properties which has made 
it one of the most powerful methods of regression analysis. The funda
mental assumptions in the general multiple linear regression are that: 
E(u) = 0, E(uu') = σ2Ι, the TXP matrix X is nonstocha
stic, and the rank of X is P (number of columns in X), and P is 
less than T, the number of observations. All these assumptions are 
icrucial for the estimation process. Therefore, one of the basic assumpt- 
ons of the general linear model is:

rank(X) = P and P <T

This assumption states that no column of the X matrix can be written 
as a linear combination of other columns of the matrix, so that these 
columns are linearly independent vectors; that is, there is no exact
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linear relationship among the X variables. In other words, there is no 
perfect multicollinearity. In matrix notation this is equivalent to saying 
that there exists no vector a such that:

a'x - 0

where a' is a lxP row vector and x is Pxl column vector. The 
reason for this assumption is that the least squares estimator β = 
= (X'X)-1 X'y requires the inversion of (X'X), and under this assump
tion it follows that (X'X) is nonsingular, so it can be inverted to obtain

P·
Unfortunately, in most economic applications it is often found that 

the rank condition is “relaxed”. In empirical econometrics, the more 
typical situation is not one of perfect multicollinearity, but rather one 
of a multicollinearity problem. In this case (X'X) is not singular, but 
is close to singular. We meet this problem when the rank assumption 
isonly just satisfied, that is when some or all of the explanatory variables 
are highly, but not perfectly collinear. It is recognized that in this 
situation, i.e., the determinant of (X'X) is close to zero, a less extreme, 
but still serious problem arises. It is also known that the problem of 
multicollinearity is one of the most significant and difficult problems 
in applied econometrics because when multicollinearity is present in a 
set of explanatory variables, the least squares estimates of the individual 
regression coefficients tend to be unstable and can lead to erroneous 
inferences. Therefore, various problems arise in empirical econometrics 
when the rank condition is only just satisfied. The question is what 
should be done when we are sure that a serious problem of multicolline
arity exists. We know that several possible methods are suggested for 
this problem. These include (Maddala, 1977):

1. Dropping one or more variables
2. Getting more or new data
3. Using prior information
4. Using principal components of the explanatory variables
5. Using ratios or first differences
6. Ridge regression

The purpose of this study on the one hand is to demonstrate the 
theory and the logic of the ridge regression method of estimation, and 
on the other hand to apply the technique to a standard estimation 
problem in economic models.

The problem selected is the estimation of an import demand function
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and a number of specifications are examined. These specifications differ 
bv the amount of multicollinearity.

Chapter Two develops the theoretical side of ridge regression. It 
begins with the problems that arise when the multicollinearity problem 
exists. In addition, the ridge estimator is derived and its optimality is 
shown. This chapter concludes with a discussion of two methods of 
choosing the ridge parameter.

Chapter Three discusses the critical analyses of ridge regression that 
have been developed by statisticians outside the classical least squares 
framework. Specifically, the decision theory of biased estimators and 
Bayesian statistical inference are included.

Chapter Four presents the ridge regression method in practice. 
The estimating power of ridge regression is also compared to the esti
mating power of least squares method in the case of the estimation of 
import demand functions.

Chapter Five concludes the study with a general summary. Sugges
tions for further research are also included in this chapter.





CHAPTER II

RIDGE REGRESSION

The objective of this chapter is to introduce and survey the approach 
and technique of the new method of estimation: Ridge regression, which 
was introduced by the chemical engineer Hoerl.

This new method of estimation is called ridge regression because 
the basis of mathematics is similar to the method of ridge analysis that 
Hoerl used earlier (1959) to describe the behavior of second-order res
ponse surfaces.

The first section of this chapter discusses the ordinary least squares 
estimator and the multicollinearity problem. The deviation of the ridge 
estimator and its optimality are presented in the next two sections. 
Methods for choosing the ridge parameter are included in the final section.

Ordinary Least Squares and the 
Multicollinearity Problem

In the following discussion we consider the general multiple regres
sion model:

y = Χβ + u

where: y is a (Txl) vector of observations 
X is a (TxP) matrix of T observations on 
P explanatory variables
β is a (Pxl) vector of unknown regression coefficients
u is a (Txl) vector of disturbances.

It is assumed that E(u) = 0 and E(uu') = σ2Ι.
We know that by the method of least squares, thepoint estimate β 

of the vector β that minimizes the sum of squared residuals (e'e) is:

β = (X'X)-1 X'y



390 Konsiantinos T. Velentzas

According to the Gauss-Markov theorem, the least squares estima
tor β is linear, unbiased and has minimum variance in the class of 
unbiased linear estimators. That is, the variance matrix of any other 
linear unbiased estimator exceeds the variance matrix of the least 
squares estimator by a positive semidefinite matrix.

There is no quarantee that the variance of the least squares esti
mator will be small. The variance of the estimator can be shown to be:

V(p) = Ε(β-β) (β-β)'

= σ2ΑΑ'

where A = (X'XJ^X'. This is:

Υ(β) = σ*(Χ'Χ)-ι

and shows that the magnitudes of the variances of the least squares 
estimators depend on the X matrix.

A more useful approach to determining the variance is to partition 
the X matrix as follows:

X = [Xl X2]

where xx is any column, and X2 consists of all the other columns. 
By the theorem on partitioned matrices (Goldberger, 1964) it can be 
shown that:

(X'X)-1

where G 

H

Xl'Xl x/X2
Γ1

G -GH'

- X2'xi X2'X2 . - -HG d-h-hgh' -

[xi*i - x'iXaH]-* , D s (X2'X2)

(X2'X2)-1 x2'Xl

This latter term H is the ordinary least squares estimator of the re
gression coefficients in

xx = X2b + v
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and G is the estimated residual sum of squares from this regression. 
This can be written in terms of R2 from this regression as:

G = [nV (l-Ri2)]-1

where R2 is subscripted to distinguish this regression from the com
plete model. Hence, the first row of (X'X)-1 is:

1 "ho -h2 -hp
nS^l-Rx2) nS12(l-R12) nS^l-Rj2) ‘ ’ ’ nS^l-R^) _

This shows that:

V(PlJ = nS12(l-R12)

and in general,

Vi ~ \ — ®2
1 PpJ ~ nSp2(l-Rp2)

The coefficient of determination obtained by regressing xp against the 
other independent variables, which is written Rp2, is often called the 
degree of multicollinearity in the matrix X. The above shows that 
the larger is Rp2, the longer is V( βρ).

Multicollinearity also tends to produce least squares estimates, 
βρ, that are too large in absolute value. It is easy to see this by examin

ing the definition of variance:

V(Pp) = E[ βρ - E( βρ)]2

= E( pp)*:+I[E( βρ)]2 - 2E( βρ)Ε( βρ)

= E( βρ)2 + βρ2 - 2βρ2

= Ε( β„)2 - βρ2

where Ε(βρ) = βρ follows from unbiasedness of the least squares 
estimators. Thus, the variance of βρ is the difference between the average 
length (squared) of βρ and the true length (square of βρ), as the 
V( βρ) is larger, so the longer will be βρ relative to βρ.
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In sum, the greater the degree of multicollinearity in the X ma
trix, the longer will be the expected value of the vector of estimated 
coefficients.

Derivation of the Ridge Estimator

The central idea of ridge regression is to choose an estimator that 
is similar to ordinary least squares, but has a shorter length. The ridge 
estimator is defined as that estimator which minimizes the sum of the 
squared distances of the points from the estimated line subject to a con
straint on the length of the estimating vector.

Let the ridge estimator be β*, and the computed points be de
fined by:

y* _ χ*β

Tho residuals are:

e* = y — y*

and the ridge estimator minimizes the sum of the squared e* values 
subject to a maximum length of β*. Let this maximum be denoted by l. 
Thus, the task of finding β* is a lagrangean problem. The lagrangean 
expression is:

L = e*'e* + ^β*'β* — l) 

Differentiation of L with respect to β* gives:

JL = e* + e* + k^- 3* + k -^3*
ββ* ββ* e + ββ* 8 + ββ* p ~ * ββ* p

= 2 -ψ- e* + 2kP* 

we know that e* = y — y*

= y - Χβ*
therefore, the derivative of e* with respect to β* is:

8e*
ββ*

= —X'
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and -ψ = —2X'e* + 2kp*

= —2X'(y—y*) + 2kp*

= —2X'y + 2Χ'Χβ* + 2kp*

Setting this equal to zero and solving for β* yields: 

β* = (X'X + kl)-1 X'y

This is the ridge regression estimator for the vector of parameters β, 
which gives us the best fit to the data for any estimator of given length. 
If k=0, this implies β*= β (we have least squares estimators), 
when k —> oo, then β* —> 0. This means as k increases, the
ridge estimators get smaller and smaller in absolute size.

In addition to reducing the absolute size of the estimating vector, 
the ridge approach also produces an estimator with a smaller variance 
than ordinary least squares. By definition, the variance-covariance 
matrix of β* is given by:

V(P*) = E { [β* — Ε(β*)] [β* - Ε(β*)] ' }

Substituting y = Χβ + u into the formula of ridge regression 
estimator yields:

β* = (X'X+kl)-1 Χ'(Χβ+u)

= (X'X+kl)-1 X'Xp-HX'X+kl^X'u

taking expected values of both sides gives:

Ε(β*) = E[(X'X-f kl)-1 Χ'Χβ + (X'X+kl)-1 X'u]

= EtX'X+kl)-1 Χ'Χβ] + E[(X'X+kI)_1 X'u]

= (X'X+kI)_1X'Xp + (X'X+kI)_1X'Eu

= (X'X+kl^X'Xp

Therefore:

β* — Ε(β*) = [X'X+kI)_1X'Xp + (X'X+klJ^X'u] 
—[(X'X+kl^X'Xp]

= (X'X+kI)_1X'u
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This can be substituted into the expression for the variance of β* to 
yield:

V(p*) = E {[(X'X+kl^X'u] [(X'X+kI)-1X'u]'}

= EftX'X+kl^X'uu'X (X'X+kl)"1]

= (X'X+kI)_1X'E(uu') X (X'X+kl)"1 

= (X'X+kI)~1X'a2IX(X'X+kI)_1

Therefore, the variance-covariance matrix of the ridge regression esti
mator is:

V(P*) = a2(X'X+kI)_1X'X(X'X+kI)_1

If k=0 this implies that

ν(β*) = σ2 (Χ'Χ)-ι = V(p)

As k —► oo, then ν(β*) —> 0. This means that the variance
of the ridge regression estimator is a decreasing function of k.

The Optimality of the Ridge Estimator

The optimality of the least squares estimator stems from the fact 
that it has minimum variance in the class of linear, unbiased estimators. 
Because the estimator is unbiased, minimum variance implies minimum 
mean square error. That is, the variance Ε[βρ— Ε(βρ)]2 is the same 
as the mean square error Ε[βρ—βρ]2.

However, the ridge estimator is biased. This is easily seen by noting 
that the ridge estimator is a linear transformation of the least squares 
estimator, as shown by the following argument:

β* = (X'X+kl)"1 X'y

= (X'X+kl)"1 Χ'Χβ

by the definition of the least squares estimator β. Adding and sub
tracting kl to the X'X term which premultiplies β yields:

β* = (X'X+kl)-1 [(X'X+kl) — kl] p

= [I-kiX'X+kl)-1]^
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and the expected value of β* is therefore given by:

Ε(β*) = [I—k(X'X+kI)-1] β 

Hence, the bias is given by:

Ε(β*) — β = —k(X'X-fkl)-1 β

when dealing with a biased estimator, such as β*, the appropriate opti
mality concept is mean square error. In order to examine the mean 
square error of β* it is useful to reparametrize the regression model 
into canonical form as follows:

where

and

y = Χβ + u = ΖΘ + u

Z = PX 
Θ = Ρ'β

P'P = PP' = I 
P' = P-1

The matrix P is the matrix of normalized characteristic vectors of 
X'X such that:

Z'Z = P'X'XP = D = diagfo, λ„ ..., λρ)

where λ1,λ2,...,λρ are the P characteristic roots of X'X.
The least squares estimator of the model in canonical form is:

0 = (Z'Z)-1 Z'y

and this is a linear transformation of β because:

0 = (Z'ZJ^Z'y = (P'X'XP)-iP'X'y

= (P-hX'XP^P'X'y = P-HX'XJ-W'X'y

= P' β

Similarly, the ridge estimators bear the same relationship

Θ* = P' β*
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The mean square errors of 0 and ;p, and of 0* and β* are 
equal:

MSE(0*) = E[(0*—Θ)' (Θ*—Θ)]

= Ε[(Θ*—Θ) 'Ρ'Ρ(Θ*—Θ)]

= Ε[(ΡΘ*—P0)' (ΡΘ*—ΡΘ)]

= Ε[(β*—β)' (β*-β)]

= Μ5Ε(β*)

Thus, the comparison of MSE^*) with MSE(p) is the same as the 
comparison of MSE(0*) with MSE(0). By definition, the mean 
square error can be decomposed into variance and bias components:

MSE(0*) = E[(0*—ΕΘ*) (0*—ΕΘ*)'] + E[(0—E0*) (0—E0*)']

= V(0*) + E[(0—E0*) (0—ΕΘ*)']

Using the results for variance and bias derived previously we have:

MSE(0*) = σ2 [(Z'Z+kl)-1 Z'Z (Ζ'Ζ+kI)"1] +

+ [kiZ'Z+kl)-1 0.k (Z'Z+kl)"1 0']

= (Z'Z+kl)-1 (a2Z'Z+k00') (Z'Z+kl)-1

= (D+kl)"1 (ff2D + k00') (D+kl)-1

The trace of this MSE(0*) is the sum of the mean square errors of the 
individual estimators:

tr MSE(0*) = tr[(D+kI)_1 (a2D+k00') (D+kl)"1]

= p?i (Xp+k)2 (σ2λρ + k0p2)

Differentiation with respect to k yields: 

atrMSE(0*) n V λρ (k0p2—σ2)
dk ~ P=i (λρ+k)3
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This derivative will be negative if (k0p2 — σ2) <0 for each p, 
since k is always nonnegative, and since the characteristic roots of X'X 
are positive since the matrix is positive definite. Thus, if k is chosen 
between zero and a2/02mai, the derivative will be negative and the 
ridge mean square error will be less than the mean square of the ordinary 
least squares estimator (k=0). The result arises because the reduction 
in variance exceeds the increase in bias. The contribution of bias is gi
ven by:

B(k) =
V k20p2 

£1 (Xp+k)2
and

dB(k)
dk 2k 2

ns 1
θρ2λρ

(λρ+k)3
> 0

and the contribution of variance is given by:

y λρσ2 

p-ι (λρ+k)2

and the latter decreases as k increases.

Methods for Choosing the 
Ridge Parameter

Although there always exists a positive value of k such that the 
ridge regression estimator has a smaller mean square error than the least 
squares estimator, the best method for selecting a particular value of k 
is not obvious. The question is how to choose the value of the unknown 
ridge coefficient k> 0 and consequently, a unique β* without using 
information other than the sample information.

There are a number of alternative suggestions which have been 
proposed for selecting the particular value of k. In this section the 
methods of choosing k that are easy to compute and used in practice 
by researchers are discussed.

The earliest method for choosing the unknown coefficient k is 
the graphic technique which Hoerl and Kennard (1970) have suggested 
based on the “Ridge Trace”.

The ridge trace is a simple graph of the values of the ridge regression 
estimators on the vertical axis plotted against the small corresponding 
values of k in the interval zero to one. The trace includes one curve 
for each coefficient. The purpose of the ridge trace is to give the analyst
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a picture of the effect of the multicollinearity and to assist further to 
choose the lowest possible value of k for which the estimate coeffi
cients have stabilized. By stable we mean that the coefficients are not 
sensitive to small changes in the estimation data. The value of k at 
which the coefficients are stable yields the desired set of coefficients.

Criteria for choosing k have been outlined by Hoerl and Kennard 
(1970). The criteria are reproduced as follows:

1. At a certain value of k the system will stablize and have the 
general characteristics of an orthogonal system.

2. Coefficients will not have unreasonable absolute values with 
respect to the factors for which they represent rates of change.

3. Coefficients with apparently incorrect signs at k=0 will have 
changed to have the proper sign.

4. The residual sum of squares will not have been inflated to an 
unreasonable value. It will not be large relative to what would 
be a reasonable variance for the process generating the data, 
(p. 65).

An alternative procedure uses the fact that in theory k=S2/0m„. 
In this procedure, an initial ordinary least squares regression is estimated 
on the transformed model y = ΖΘ + u and the maximum 0 is 
used as an initial value of k. Using this value, an initial ridge regres
sion is estimated and this yields a second estimate 0mo, which in turn 
yields another estimate of k. This procedure is repeated until k con
verges. Finally, given the selected estimate of the Θ vector, the β ve
ctor is estimated from:

β* = P'0*

It should be noted that these procedures make k a function of 
the sample data and, therefore, k becomes stochastic. The properties 
of the ridge estimator when k is stochastic are not well known, but 
are discussed in the next chapter.



CHAPTER III

CRITICISMS OF RIDGE REGRESSION

The purpose of this chapter is to survey the critical analyses of 
ridge regression that have been developed by statisticians outside the 
classical least squares framework. Two major approaches are considered, 
namely, the decision theory of biased estimators and Bayesian statis
tical inference.

This chapter is divided into five sections. The first section represents 
the decision theory approach to estimation. The minimax analysis of 
regression is discussed in the second section. A discussion of William G. 
Brown and Bruce R. Beattie’s critique of the ridge regression method 
is included in section three. The two final sections discuss the Bayesian 
statistical inference, and Bayesian inference and ridge regression.

The Decision Theory Approach 
to Estimation

In econometrics we are concerned with the use of sample data to 
learn about the unknown economic parameters. Our interest is in finding 
good point estimates of economic parameters. Typically, a “best” esti
mator is defined to be one that predominates over any other when com
parative criteria had been used.

It is well known that for comparison of unbiased estimators, the 
variance criterion is used and the estimator is chosen that has the smal
lest variance. When the estimator is biased, as in the case of the ridge 
estimator, a better comparison of the precision of estimators would be 
obtained by comparing their mean square errors.

Furthermore, the unbiasedness property plays a more important 
role in the theory of interval estimation than it does in point estimation. 
This is because’confidence intervals are centered on an unbiased estimatet.
and because the width of the interval is equal to the estimated square 
root of the variance of the estimator. The smaller variance for the biased
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estimator implies that it is a more stable estimator than is the unbiased 
estimator.

The justification given for ridge regression in the last chapter was 
that, for a range of values of k, the sum of the mean square errors of the 
ridge estimators of the regression coefficients is less than the sum of the 
mean square errors of the ordinary least squares estimators. That is:

i Ε(βΡ*-ρΡ)* <i Ε(βρ-βρ)*
p=l P=1

This reduction is obtained because the variances of the ordinary least 
squares estimators exceeds the sum of the variances of the ridge esti
mators plus their biases squared.

The preceding justification weights the squared errors for both 
estimation techniques equally. More generally, the performance of an 
estimator might be evaluated using a weighted sum of squared error 
such as:

Σ Wptfp*-pp)2
P = 1

In decision theory, such a function is called a loss function and, in gene
ral, it would be written (Greenberg and Webster, 1983, p. 160):

L(P*, P) = r - P)' W (β* - β)

where β* is a vector of estimates of the parameters contained in the β 
vector, and W is a positive semidefinite matrix of weights. The parti
cular example used here is the case of a quadratic loss function. The 
problem, in terms of decision theory, is to decide on an estimating for
mula that will minimize the loss function.

However, the loss function is stochastic, and thus the size of the 
loss associated with any estimator will vary depending on the sample 
data. Decision theorists, therefore, consider the expected value of the 
loss function, which is called the risk function:

R (β*, β) = Ε[Ι,(β*, β)]

Our objective is to decide on an estimating formula β* which mini
mizes, in some sense, the risk function.
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Usually, it is not possible to find an estimator which globally mini
mizes the risk. Thus, what is undertaken is a comparison of existing 
estimators in terms of their risk. In cases where one estimator has the 
lowest risk for one range of parameter values, and another estimator 
has the lowest risk for the remaining range of parameter values, a fre
quently used criterion is the minimax criterion.

According to the minimax criterion, we find the maximum risk of 
each estimator and we choose that estimator which minimizes this ma
ximum risk. An estimator β* is minimax if

max R (β*, β) ζ max R (β*, β)

for all β*.
We note that another criterion for choosing a “good” decision is the 

criterion which is based on the idea of admissibility. For this case we 
eliminate the “bad” decisions.

If we have the estimators β* and β*', then β* is said to domi
nate β*', when the following relationships hold (Maddala, 1977, p. 54):

R@*, β) < R@*' β) for all β 

and Π(β*, β) < R^*' β) for some β.

Minimax Analysis of Regression

It was noted in the previous section that when we drop the assump
tion of unbiasedness, we have a wider class of estimators which includes 
biased estimators. To analyze this class, decision theory is used which 
starts with the loss function.

Now to discuss the minimax analysis of regression, we assume again 
the standard regression model:

y = Χβ + u

where E(u)=0 and E(uu')=a2I. We want to find a linear 
estimator β* such that:

β* = Wy

and from the assumptions above Εβ* = WXβ since Eu=0. We

26
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know from the previous section that the risk function for a quadratic 
loss is defined as:

Rtf*, P) = E[(P* - P)' (β* - P)]

From this relationship we have (Greenberg and Webster, 1983, p. 166): 

E[(p* - p)' (P* - P)]

= {[(P*—Ep*) - (p—Ep*)]' [(P*—Ep*) - (P—Ep*)}

= E[(p*—Ep*)' (P*—Ep*)] + [(Ep*—p)' (Ep·—β)] 

Substituting p*=Wy and Ep*=WXp yields:

E[(P*—P)' (P*-P)]

= E[(Wy—WXp)' (Wy—WXp)] + [(WXp—p)' (WXp—p)]

= E[(y—Xp)' W'W (y-Xp)] + [P' (WX—I)' (WX-I) p]

= σ2 tr WW' + p' (WX—I)' (WX—I) p.

Investigating the last expression shows that the first term o2trW'W is 
independent of p while the second is a positive semidefinite quadra
tic form in p and it does not involve p*. If p -* oo, then this 
term will grow without bound.

All the above implies that the risk of an estimator that is dependent 
of p will be affected by large values of p. When WX=I then:

R (p*, p) = E[(p*—p)' (P*—P)]

= σ2 tr WW'

This means that we have a linear estimator that is minimax in the class 
of linear estimators. When W=(X'X)"1X' then WW'=(X'X)-1· 
This is the case of the least squares estimator and shows that it is mini
max in the class of linear estimators.

Regarding the ridge regression estimator we can see that this esti
mator is dependent on p because k is defined as:
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and Θ is a function of the coefficient vector β. Thus, for large values 
of at least one 0; the risk of the ridge estimator R(0*,0) will be 
greater than least squares estimator R(@,q) because the latter does 
not depend on the 0/3. Therefore, choosing k without reference to 
the data will not yield a minimax estimator.

Hoerl, Kennard and Baldwin (1975) suggested for choosing k based 
on data:

k
P<?2

00

Thisted (1976) has shown that this formula is minimax if and only if:

i=l

V2
^ 2 -(-

_P_
2 P > 3

where λρ is the smallest root of X'X. To meet this condition λρ must 
be large. For the case of the multicollinearity problem λρ is small, so 
the condition of minimaxity is unlikely to be met. Therefore, people who 
believe the minimax criterion do not suggest the ridge regression method 
as a method to solve the multicollinearity problem. Other criteria and 
approaches such as admissibility might imply different conclusions. For 
example, those who use in their analysis the criterion of admissibility 
suggest that we can use the ridge regression method to solve multicol
linearity because the ridge estimator dominates the least squares esti
mator in terms of mean square error.

Prior Information and 
Ridge Regression

Brown and Beattie (1975) suggest that the ridge estimator may be 
most appropriate in the case where the researcher has prior information 
about the signs of the unknown regression coefficients. Their statement 
is as follows:

. . . ridge estimates can also be unreliable and misleading 
under certain conditions. To avoid erroneous conclusions
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from ridge regression, some prior knowledge about the true 
regression coefficients is helpful. A theorem on expected bias 
implies that ridge regression will give much better results 
for some economic models such as certain production function, 
than for others because of smaller expected bias ... on the 
other hand ridge estimation of other economic models, such 
as certain demand functions, could give very poor or mis
leading results . . . .(p. 21).

Brown and Beattie’s assertions and suggestions are products of 
the following analysis. Consider again the formula of bias:

(3.1) Ε(β*) — β = —k(X'X-fkl)-^

which was defined in the last chapter, third section.
Now we consider the following regression model for the simple case 

of two standardized explanatory variables:

y = β^ + β2χ2 + u 

and the ridge regression normal equations are:

(χ'χ+Η)β* = x'y

- (l+k) (ria) - Pi* - - riy -

- ria (l+k) - - Pi* - r2y

where r12 is the simple correlation coefficient between xx and x2 and 
rJy is the simple correlation coefficient between Xj and y, j = l, 2. 
Now the inverse of (x'x+kl) is:

(l+k)
(l+k)2 — r212

Γ12
(l+k)2 —r212

*12_____
_ (l + k)2_r2ia

(l+k)
(l+k)2 — r2j

(x'x-fkl)-1
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and consequently:

(x'x+kl) χβ =
Γ (1+k) Γ12

Pi(1+k)2 — r212 (1+k)2 — r212

Γ12 (1+k) Q
» (1+k)2 — r212 (1+k)2 —r2ia Pa

(l+k^ — Γ12β2

(1+k)2 —r212

—Γι2βι + (l+k)P2 
(1+k)2 — r212

according to the last expression for βχ* and β2* equation (3.1) 
yields:

Ε(βχ*) - βχ = (1 + k)2 [(1+1ί)β! - Γ12β2]

Ε(β2*) — β2 = (1+k)7^_ Γ212~ C(l+k)P· — Γι2βι]

Investigation of the above equation implies:
1. When Xj and X2 are positively correlated the expected 

bias of β2* and β2* will be smallest if β2 and β2 have the 
same sign and they are also of about equal magnitude.

2. If βχ and β2 have opposite signs and r12 > 0 then
the expected bias of βχ* and β2* will be greatly increased.

3. If Xj and X2 are negatively correlated then the bias 
squared will be smallest when βχ and β2 differ in sign and they are 
about equal in absolute magnitude.

Also, Brown and Beattie (1975, p. 31) show that all of the above 
results can be generalized to the case of P standardized explanatory
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variables. They proved that the bias of the ridge estimate of the jth 
standardized coefficient can be expressed as (1975, p. 31):

EM-Pj i P*J. P.

where A* = (x'x+kl), ci} is a cofactor of A*, βϋ(* = —1.0 if 
i=j and i^j, β*^ denotes the ridge estimate of the coefficient for 
the ith variable, where Xj has been regressed on the P—1 remaining 
explanatory variables. Investigation of this general case gives the same 
result as previously discussed, i.e., the bias and mean square error will 
be smaller as most of the β'β have the same sign and β] is approxima
tely equal to the average of the other P—1 explanatory variables. 
Thus, Brown and Beattie advocate the use of ridge regression only when 
the signs of β'β are the same such as in the Cobb-Douglas production 
function, because the ridge regression for other cases yields a larger bias 
and thus poor results.

I would like to take this opportunity to emphasize that unbiased
ness plays no important role in the theory of point estimation. Therefore, 
the bias by itself is not an important criterion for checking the results 
of the estimation. Also, the purpose of ridge regression is to reduce the 
high variance of the estimating coefficients by adding some bias. Its 
focal point is the mean square error and not the bias. Therefore, the 
question is: To what extent is the magnitude of the mean square error 
and not the magnitude of the bias. For solving multicollinearity the ridge 
regression method of estimation can be used in spite of their analysis 
because there always exists a value of k> 0 such that:

MSEfl*) < V(p) 

and the coefficients are stable.

Bayesian Statistical Inference

A more general approach to the incorporation of prior information 
in regression is to use Bayesian statistical inference. Bayesian inference 
is based on Bayes theorem which states that the posterior probabilities 
density function (pdf) is proportional to the prior probabilities density 
function times the likelihood function:
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posterior (pdf) <x prior (pdf) x likelihood function

where oc sign denotes “proportional to”. The prior probabilities density 
function incorporates all prior information, while the likelihood function 
incorporates all the sample information. Therefore, the Bayesian appro
ach combines a prior distribution with sample information to form a 
posterior distribution. The mean of the posterior distribution of the 
parameter vector β gives the Bayes estimator "β.

Applying the Bayesian approach to the problem of estimation of 
the linear regression model:

the posterior distibution for β, which is conditional on σ, is pro
portional to the product of the prior distribution for β and the likelihood 
function. The sample information for the linear regression model is 
given by the data on the dependent and explanatory variables. The data 
are given by the matrix D defined as:

It is well known that if x has normal distribution with mean μ 
and variance σ2, or x ~ Ν(μ, σ2), then the probability density 
function of x is defined as:

and by definition, the likelihood function is given by the following 
formula:

(3.2) y = Χβ + u

D = (y I X)
I

TX(PXl) TX1 TXP
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To find the Bayes estimator for β, if we assume for the linear 
regression model (3.2) that u ~ N(0, σ2Ι) and u, are independent 
random variables, then the likelihood function for the sample value is:

L(P, */y) = (frjpa exp [ - ± u'u ]

or (Judge, 1982, p. 228):

L(P, σ/y) CC exp [- ± (y xp)' (y—XP) ]

The exponential term in the likelihood function can be written in 
terms of the ordinary least squares estimator β using the following 
argument. Expanding the quadratic form yields:

(y-XP)'(y-XP) = y'y - (P'X'y)' - P'X'y + P'X'XP

Substitute Χ'Χβ for X'y (the normal equations of ordinary least 
squares) yields:

(y—Xp) ' (y-χρ) = y'y - β'Χ'Χρ - Ρ'Χ'Χβ + P'X'XP

Add the two terms β'Χ'Χβ — p'X'y and β'Χ'Χβ — y'Xp, both 
of which are zero by the normal equations. Combining terms we obtain:

(y—xp) ' (y-xp) = (y-Χβ) ' (y-Χβ) + (Ρ-β)'Χ'Χ(Ρ-β)

but from ordinary least squares theory:

Sa = (y-Χβ) ' (y-Χβ) / n

where η = T—P. Hence:

(y-Χβ) ' (y-Χβ) = ns2 + (β-β) 'Χ'Χ(β-β)

and the likelihood function is:

1 1 
L(P. ®/y) = oc — exp { [η8®+(β—β)'Χ'Χ(β—β)] }
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In order to obtain the posterior distribution we must specify the 
prior density function. If prior information about β can be described 
by a normal distribution with mean vector β0, and covariance matrix 
v2A_1 or β ~ Ν(β0, v2A_1), then the prior density is (Greenberg 
and Webster, 1983, p. 194):

g(P»ff) cc exp [-------j (P—Po) ' A/v2 (β—β0)]

The product of this prior density and likelihood function is:

, 1 r ns2 + (P—p) 'Χ'Χ(β-β) ,
ρ(β/σ) cc v T exp { — -γ [ ------------------^---------------- --------- 1-

+ (P—Po) ' -r (P—Po) ] }

The quadratic form can be expanded as:

i / γ/γ i v

— -j- [ns2 + β' ( ) β + other terms]

Judge (1982, p. 228) shows that this may be written:

(3-3) - 4 [ns2 + (β-β) ' ( 4? + ^ ) (M)]

where

■ X'X A
-1

Γ X'X Λ , A a
β = σ2 1 v2 ai ' β + V2 Po

Therefore, according to the above analysis the posterior density of β can 
be written:

ρ(β/σ) cc v~kff-T exp------j {------ ^ [ns2 + (β—β)' ^ +

+ £ ) (P-iβ) + terms not involving β] }
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This is a normal distribution, with mean β, and covariance-variance 
matrix [Χ'Χ/σ2 + A/v2]-1. Thus, β is the Bayes estimator 
of β.

Add and subtract β0 to the right hand side of (3.4) and write the 
—β0 term as:

X'X , A "
-1

X'X A
_ σ2 + v2 _ σ2 1 v2

This enables the term to be brought inside the second matrix expression 
on the right hand side of (3.4) and the A /v2 terms cancel. The result is:

P = Po +
X'X A

~2 + tt2

--1
X'X

<β- -β0) = β0 + W(p β0)

where the matrix W = ^

Finally we have:

% = (Ι-\ν)β0 + Wp

Therefore, β is a weighted average of β0 and β.

)

Bayesian Inference and 
Ridge Regression

It was shown in the previous section that the Bayes estimator of 
β is:

= ~ ΥΎ A ~ml

(3.5) β =
X'X A_

rp2 + ,r2

X'X Λ A 
-jT β + ^2 Po

If we choose the prior mean β0 = 0 and A = I; this yields: 

? =

1

X X 4

-1
X'v

—2— + ~2 1 σ2 v2

1

C
l

I

—1

x'x + —2 i
V2

x'y
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We know that v2 is the common variance of the prior distribution 
of β. When k = σ2/ν2, we obtain:

β = β* = (X'X+KI)-1 X'y

This is the ridge estimator, therefore, for k=a2 /v2 the ridge estimator 
is a Bayes estimator. The question which arises here is if we can assume 
that the prior mean β0 = 0 and that all regression coefficients have 
a common variance. This seems an unlikely characterization of prior 
beliefs and thus forms the basis of the Bayesian criticism of ridge regres
sion.

The close relationship between the ridge estimator and the Bayesian 
estimator shows that the ridge estimator is an attempt to incorporate 
prior information about the unknown parameters β.

In the case of multicollinearity, the researcher usually doubts the 
accuracy of the sample information. That is, the researcher obtains 
sample results that conflict with some prior information. In particular, 
the researcher believes that the true parameters are closer to zero (smal
ler) than the sample estimates. Thus, the ridge estimator which is an 
average of a zero vector and the sample estimates, represents a reason
able approach to reducing the size of the regression coefficients.

We can be less restrictive in the specification of v2 and β0. If 
we choose a different prior variance for each coefficient (vx2 + v22 + 
-f- . . . -f- vp2), we obtain:

ki = σ2 /Vj2 

k2 = σ2 /v22

and so on. This yields a “generalized” ridge estimator: 

Bc* = [X'X + Π]-1 X'y

where

n
ki 0 ... 0 -
0 k, . . . 0 
0 0 . . . kp _

Further, we can select β0 to be nonzero and obtain the Bayes estimator 
using formula (3.5).





CHAPTER IV

AN APPLICATION OF RIDGE REGRESSION:
DEMAND FOR GREEK IMPORTS

The aim of this chapter is to demonstrate an example where we 
can see ridge regression at work in data analysis in a realistic setting.

Although empirical results are presented here, and real-world data 
is used, no statement is made about the estimating model or results 
significant to economic theory, because the objective is demonstration, 
and not model determination. For this purpose we also assume that none 
of the other problems of empirical econometrics, such as heterosceda- 
sticity or autocorrelation are present.

This chapter is divided into four sections. The first discusses the 
models and data used in the estimation procedure. The second section 
develops the least squares method and the measures of multicollinearity. 
The ridge regression estimates and ridge trace method of choosing k 
are presented in the third section. The final section is devoted to choosing 
k using prior information and to employing the minimax criterion for 
the ridge estimates.

Model and Data

In our discussion, we have chosen an example based on aggregate 
data concerning import activity in the Greek economy. It is assumed 
that a linear relationship exists between the dependent variable imports 
(RIMP) and two explanatory variables income (RGDP), and relative 
prices (RP) and a disturbance term u. For the term u it also is 
assumed that it is a random quantity, independently distributed with 
zero mean and constant variance σ2. The description of the variables 
in the study is given in Table 4.1.



414 Konstantinos T. Velentzas

TABLE 4.1

Description of Variables in the Study

Variables Symbol Description

Imports RIMP Imports, cif. Billions of 1975 
Drachmas

Income RGDP Gross Domestic Product. Billions of 1975 
Drachmas

Relative Prices RP Import Unit Value/GDP Deflator 
1975 = 100

Note: The variable RP is defined by the formula:

j^p _ Unit Value of Imports (UVIMP) 
— Greek Prices

We consider the following specifications for the unstandardized 
variables:

Model I: log RIMP = β,,+βχ log RGDP + β2 log RP + u 

Model II: log RIMP = p0+p! log RGDP + β2 log RGDP_X

+ β3^ RP + u

Model III: log RIMP = βο+βχ log RGDP + β2 log RGDP_j

+ β3 log RP + β4 log RP_! + u 

and, for the standardized variables:

Model IV: log SRIMP = βχ log SRGDP + β2 log SRP + u 

Model V: log SRIMP = βχ log SRGDP + β2 log SRGDP^

+ β3 log SRP + u

Model VI: log SRIMP = β! log SRGDP + β2 log SRGDP^

+ β3 log SRP + β4 log SRP_! + u
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The ith observation of each standardized variables Z is derived from 
the corresponding unstandardized variable X as follows:

Z,
X, —X

(X, — X)2

According to economic theory, the explanatory variable gross 
domestic product should positively influence imports. Contrarily, im
ports should increase as relative prices decrease. In mathematical nota
tion, the above can be expressed as follows:

SRIMP SRIMP _ SRIMP _ SRIMP
SRGDP > ° ’ 3RGDP_! > 0 ’ SRP U ’ SRP^

Therefore, according to economic theory we expect from the estimation 
of the coefficients of the models positive signs for the coefficients of 
RGDP and negative signs for coefficients of RP.

The coefficients and β2 of Model I are the elasticities with 
respect to income and price, respectively. In mathematical notation 
we have:

E
RIMP,RGDP

Slog RIMP 
Slog RGDP ’

E
RIMP,RP

Slog RIMP 
Slog RP

The calculation of elasticities for all the models is given in Table 4.2.

TARLE 4.2

Calculation of Elasticities

Income Price
Model Short Run Long Run Short Run Long Run

I Pi Pi P= Pa
II Pi P1+P2 Pa Pa
III Pi Pi+Pa Pa PaTPi
IV pi pi jja Pa
V pi βι + pa pa pa

VI Pi βΐ+β3 Pa
U , V
PaTpi

Note: The coefficients, jjj’s, of the explanatory variables, X,’s,
are defined as follows:
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The data to be used in the analysis is given in Table 4.3, and was 
obtained from International Financial Statistics, English Year Book 1981. 
This is an historical data set with observations indexed by time, and 
consists of thirty observations on the dependent variable IMP and three 
explanatory variables, GDP, RGDP and UVIMP for the years 1951 
through 1980.

TABLE 4.3

Annual Data on Greek Economy·, Import Data 
(Billions of Greek Drachmas)

Year IMP UVIMP GDP RGDP

1951 5.98 23.2 39.4 145.5
1952 5.19 23.7 41.3 146.8
1953 7.16 35.6 54.1 167.5
1954 9.90 42.0 62.4 172.6
1955 11.47 42.3 72.1 185.8
1956 13.91 44.2 83.1 200.7
1957 15.73 45.1 89.5 215.0
1958 16.95 41.4 93.8 233.1
1959 17.01 41.1 97.5 241.5
1960 21.06 39.9 105.2 202.1
1961 21.42 39.3 118.6 280.2
1962 21.04 38.9 126.0 284.4
1963 24.13 38.8 140.8 313.2
1964 26.55 40.1 158.0 339.3
1965 34.01 40.6 179.8 370.9
1966 36.69 41.2 200.0 393.6
1967 35.59 40.8 216.1 415.2
1968 41.80 41.1 234.6 442.8
1969 47.83 41.1 266.5 486.7
1970 58.75 42.9 298.9 525.4
1971 62.94 44.4 330.3 562.9
1972 70.44 48.3 377.7 612.8
1973 102.75 57.6 484.1 657.6
1974 131.56 84.8 564.2 633.7
1975 172.02 100.0 672.2 672.2
1976 221.82 108.5 825.0 714.9
1977 252.15 116.6 963.7 739.5
1978 287.73 127.0 1,161.4 788.9
1979 356.82 155.2 1,430.9 818.8
1980 452.88 209.4 1,722.1 832.3

Source: International Financial Statistics, English Year Book 1981.
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Measures of Multicollinearity

It was demonstrated in the previous theoretical discussion that 
when there are strong linear relationships among the explanatory va
riables, the least squares estimates of the individual regression coefficients 
tend to be unstable. The extent of multicollinearity and the estimating 
power of least squares method for the models can be shown by the re
gression results. The least squares fits are:

logRIMP = —7.063 + 1.39 logRGDP — 0.31 logRP
(—12.076) (53.38) (—2.91)

logRIMP = —6.91 + 1.069 logRGDP + 0.31 logRGDP.! —
(—11.26) (2.73) (0.82)

—0.33 logRP 
(—3.0076)

logRIMP = —7.77 + 1.077 logRGDP + 0.33 logRGDP^ —
(—16.58) (3.87) (1.21)

— 0.81 logRP + 0.63 logRP.!
(—6.57) (5.037)

logSRIMP = 0.96 logSRGDP — 0.052 logSRP
(54.40) (—2.97)

logSRIMP = 0.74 logSRGDP + 0.22 logSRGDP_! — 
(2.78) (0.84)

— 0.056 logSRP
(—3.067)

logSRIMP = 0.75 logSRGDP + 0.23 logSRGDP_x — 
(3.95) (1.24)

— 0.13 logSRP
(-6.71)

+ 0.104 logSRP_! 
(5.15)

The number in parenthesis below each coefficient is a t-ratio.
All the regression results are displayed in Tables 4.4, 4.5, and 4.6.

27
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TABLE 4.4

Eigenvalues and Condition Number for Each Model

Model

Eigenvalues

I II III IV V VI

λι 0.013 0.0095 0.0088 16.18 0.048 0.016
Xj 4.650 0.0190 0.0180 41.82 18.180 0.081
λ3
\
λβ

1692.730 5.4100
2659.5500

0.0810
8.7100

3243.8300

65.770 8.640
3214.910

Condition
Number 
^mex Amjo

130,210 279,952.63 368,617 2.58 1,370.208 200,931.87

TABLE 4.5

Coefficient of Determination Rp2 Against 
the Explanatory Variables and R2 

from Regression

Model I II III

Dependent
Variable

logRGDP 0.9966 0.9966
logRGDP.j 0.9965 0.9965
logRP 0.2427 0.2776 0.6962
logRP.j 0.7020

Ra 0.9935 0.9937 0.9969

Note: The results of Table 4.5 are the same for Models IV, V, 
and VI.
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ΤΑ RLE 4.6

Correlation Matrix of Coefficients

Variables Intercept logRGDP logRGDP_i logRP

Model I logRGDP 
logRP

—0.6800
—0.9727 0.4926

Model II logRGDP 
logRGDP.! 
logRP

—0.3280
0.2849

—0.9719
—0.9977

0.2466 —0.2148

Model III logRGDP 
logRGDP.! 
logRP 
logRP.i

—0.3079
0.2618

—0.3106
—0.3633

—0.9976
0.1551
0.0063

—0.1469
0.0099 —0.7611

Note: The correlation matrix of coefficients is symmetric.
The results of Table 4.6 are the same for Models IV, V and VI (without 
including intercept).

Examining the least squares fits shows that the algebraic signs of 
the estimated coefficients for Models I, II, IV, and V agree with the 
economic theory. The sign of the estimated coefficient pj for Models 
III, and VI is positive while it was expected, according to economic 
theory, to be negative. Also t-ratios for the coefficient p, in the Models 
II, III, V, and VI appear very low, so that the null hypothesis H0 : β2=0, 
is accepted for level of significance a=0.05. On the other hand, the 
resultant F values are high for all the models, therefore, the test 
statistic F for the explanatory variables as a group is significantly 
different from its tabulated value.

The regression results that are included in Table 4.4 show us that 
the condition number for Model I is high, while for Model IV it is very 
low. Also the condition number for Models II, III, V, and VI is very 
high. We note that this number for Models V, and VI is smaller than for 
the Models II, and III, respectively, but it remains high.

Investigating the results that are reported in Table 4.5 shows that 
a high estimated value R2, for all the models is obtained. Also the value 
of the coefficients of determination Rp2 among the explanatory vari
ables are high for Models II, III, V, and VI, and for the case in which
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the explanatory variables logRGDP, and logRGDP^ are considered 
as dependents.

Examining the simple correlations r^ between the estimated coef
ficients shows that r12=—0.9977 and r12 = —0.9976 for the Models II, 
V, and III, V, respectively. This means that there is very strong negative 
correlation between the coefficients px and β2· The correlation matrix 
for the coefficients is presented in Table 4.6.

All the “symptoms” which are discussed in the previous analysis 
for Models II, III, V, and VI, namely, high values of R2, highly signifi
cant F combined with highly insignificant t, high condition number, 
high correlation between the coefficients βχ and β2 and also for Models 
III and VI the sign of the estimated coefficient β4 did not conform to 
prior expectation, indicate that a substantial multicollinearity problem 
is present.

Ridge Trace Estimates

It was noted previously the one relatively new approach to multi
collinearity is to use a biased linear estimator in place of least squares. 
The purpose of this section is to provide the alternative estimation method 
of ridge regression for the imports data. It was shown, in chapter two, 
that ridge regression amounts to adding a scalar k> 0 to the diagonal 
of the cross product or correlation matrices of the regressors before in
verting them for least squares estimation. That is, we must solve the 
equation:

β* = (X'X+kI)_1X'y

for several values of the ridge coefficient k. In this section, we report 
results for k in the interval (0, 0.02).

The numerical results for the Models I, II, III, IV, V, and VI are 
shown in the Tables 4.7, 4.8, 4.9, 4.10, 4.11, and 4.12, respectively, for 
twenty-one different values of k, including the least squares solution 
k=0.

The ridge results that are included in Table 4.7 show that the esti
mate coefficients β4 and β2 of the Model I did not change as k was in
creased from the value 0.0 to 0.02.

Examining the ridge estimates for Model II that are reported in 
Table 4.8 show that the estimate coefficients of logRGDP and log 
RGDP_! changed as k was increased. Specifically, the estimated coef
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ficient βχ was decreased as k was increased and β2 was increased, while 
the coefficient β3 did not change.

Table 4.9 shows that as k was increased the coefficients of log 
RGDP and logRGDP^ changed as in the case of the Model II.

To find the value of k which tends to stabilize the estimated coeffi
cients of logRGDP and logRGDP^ we follow the ridge trace method 
whose maps for all the coefficients and Models I, II, and III, are portayed 
in Figures 4.1, 4.2, 4.3, and 4.4. Figures 4.1 and 4.2 illustrate the insta
bility of the least squares solution. We can see that at value of k in the 
interval [0.001, 0.002] reasonable stability of the coefficients is achieved. 
If we choose k=0.001 the ridge regression fits for the Models I, II, and 
III are respectively:

TABLE 4.7

Ridge Estimates for Model I

k
Λ
βι β2 R1 F

0.000 —7.063 1.392 —0.318 0.9935 1988.270
0.001 —7.037 1.390 —0.322 0.9935 1987.901
0.002 —7.012 1.388 —0.325 0.9935 1986.820
0.003 —6.986 1.387 —0.328 0.9935 1985.039
0.004 —6.961 1.385 —0.332 0.9935 1982.551
0.005 —6.935 1.383 —0.335 0.9935 1979.376
0.006 —6.910 1.381 —0.338 0.9935 1975.528
0.007 —6.885 1.380 —0.341 0.9934 1971.021
0.008 —6.860 1.378 —0.345 0.9934 1965.867
0.009 —6.835 1.376 —0.348 0.9934 1960.087
0.010 —6.810 1.374 —0.351 0.9934 1953.697
0.011 —6.786 1.373 —0.354 0.9934 1946.714
0.012 —6.761 1.371 —0.357 0.9933 1939.157
0.013 —6.737 1.369 —0.361 0.9933 1931.046
0.014 —6.712 1.368 —0.364 0.9933 1922.402
0.015 —6.688 1.366 —0.367 0.9933 1913.245
0.016 —6.664 1.364 —0.370 0.9932 1903.595
0.017 —6.640 1.362 —0.373 0.9932 1893.475
0.018 —6.616 1.361 —0.371 0.9931 1882.905
0.019 —6.592 1.359 —0.379 0.9931 1871.908
0.020 —6.569 1.357 —0.382 0.9931 1860.505
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TABLE 4.8

Ridge Estimates for Model II

k A
βο

A A
Ρ»

A
β3 BP· F

0.000 —6.918 1.069 0.317 —0.338 0.9937 1309.818
0.001 —6.840 0.930 0.452 —0.349 0.9936 1303.162
0.002 —6.798 0.865 0.515 —0.355 0.9936 1295.559
0.003 —6.769 0.828 0.550 —0.358 0.9936 1289.786
0.004 —6.746 0.803 0.574 —0.361 0.9936 1285.367
0.005 —6.727 0.786 0.590 —0.364 0.9935 1281.832

0.006 —6.710 0.773 0.601 —0.366 0.9935 1228.873

0.007 —6.694 0.763 0.610 —0.368 0.9935 1276.292

0.008 —6.679 0.755 0.618 —0.370 0.9935 1273.959

0.009 —6.665 0.748 0.623 —0.372 0.9935 1271.788

0.010 —6.652 0.743 0.628 —0.373 0.9935 1269.719

0.011 —6.639 0.738 0.632 —0.375 0.9935 1267.709

0.012 —6.626 0.734 0.635 —0.376 0.9935 1265.728

0.013 —6.614 0.730 0.638 —0.378 0.9934 1263.752

0.014 —6.602 0.727 0.640 —0.379 0.9934 1261.764

0.015 —6.590 0.724 0.642 —0.381 0.9934 1259.751

0.016 —6.578 0.721 0.644 —0.382 0.9934 1257.704

0.017 —6.567 0.719 0.645 —0.384 0.9934 1255.614

0.018 —6.555 0.717 0.647 —0.385 0.9934 1253.475

0.019 —6.544 0.715 0.648 —0.386 0.9934 1251.284

0.020 —6.532 0.713 0.649 —0.388 0.9934 1249.035
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TABLE 4.9

Ridge Estimates for Model III

k A
βο

A
βι β*

A
β3

A
β* Λ» F

0.000 —7.776 1.077 0.331 —0.812 0.635 0.9969 1946.560
0.001 —7.694 0.940 0.465 —0.818 0.629 0.9969 1926.587
0.002 —7.647 0.876 0.526 —0.819 0.624 0.9969 1903.748
0.003 —7.614 0.838 0.562 —0.818 0.618 0.9968 1886.196
0.004 —7.586 0.814 0.585 —0.816 0.613 0.9968 1872.433
0.005 —7.563 0.797 0.601 —0.814 0.607 0.9968 1861.043
0.006 —7.541 0.784 0.612 —0.811 0.602 0.9968 1851.115
0.007 —7.520 0.774 0.621 —0.809 0.596 0.9968 1842.076
0.008 —7.501 0.766 0.628 —0.806 0.591 0.9967 1833.558
0.009 —7.482 0.759 0.634 —0.803 0.586 0.9967 1825.320
0.010 —7.464 0.754 0.638 —0.801 0.580 0.9967 1817.201
0.011 —7.447 0.749 0.642 —0.798 0.575 0.9967 1809.088
0.012 —7.429 0.745 0.645 —0.795 0.570 0.9967 1800.905
0.013 —7.412 0.741 0.648 —0.792 0.565 0.9967 1792.598
0.014 —7.396 0.738 0.650 —0.790 0.560 0.9966 1784.132
0.015 —7.379 0.735 0.652 —0.787 0.555 0.9966 1775.481

0.016 —7.363 0.732 0.653 —0.784 0.550 0.9966 1766.630

0.017 —7.347 0.730 0.655 —0.782 0.545 0.9966 1757.569

0.018 —7.331 0.727 0.656 —0.779 0.540 0.9966 1748.293

0.019 —7.315 0.725 0.657 —0.776 0.535 0.9966 1738.802
0.020 —7.299 0.723 0.658 —0.774 0.530 0.9965 1729.097
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TABLE 4.10

Ridge Estimates for Model IV

k h
1!
P> IP F

0.000 0.969 —0.0529 0.9935 4129.444
0.001 0.968 —0.0534 0.9935 4128.708
0.002 0.967 —0.0540 0.9935 4126.442
0.003 0.965 —0.0546 0.9935 4122.625
0.004 0.964 —0.0551 0.9935 4117.647
0.005 0.963 —0.0557 0.9935 4111.074
0.000 0.962 —0.0562 0.9935 4102.983
0.007 0.960 —0.0567 0.9934 4093.685

0.008 0.959 —0.0573 0.9934 4082.902
0.009 0.958 —0.0578 0.9934 4071.011

0.010 0.957 —0.0583 0.9934 4057.622

0.011 0.956 —0.0589 0.9934 4043.230

0.012 0.954 —0.0594 0.9933 4027.512

0.013 0.953 —0.0599 0.9933 4010.641

0.014 0.952 —0.0649 0.9933 3992.649

0.015 0.951 —0.0610 0.9933 3973.624

0.016 0.950 —0.0615 0.9932 3953.597

0.017 0.949 —0.0620 0.9932 3932.546

0.018 0.947 —0.0625 0.9931 3910.616

0.019 0.946 —0.0630 0.9931 3887.785

0.020 0.945 —0.0635 0.9931 3864.144
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TABLE 4.11

Ridge Estimates for Model V

k % fr
V
Pa R2 F

0.000 0.744 0.224 —0.0562 0.9937 2043.358
0.001 0.647 0.319 —0.0580 0.9936 2032.910
0.002 0.602 0.363 —0.0589 0.9936 2021.125
0.003 0.576 0.388 —0.0596 0.9936 2012.034
0.004 ,0.559 0.405 —0.0601 0.9936 2005.189
0.005 0.547 0.416 —0.0605 0.9935 1999.712
0.006 0.538 0.424 —0.0608 0.9935 1994.979
0.007 0.531 0.431 —0.0612 0.9935 1990.981
0.008 0.525 0.436 —0.0615 0.9935 1987.369
0.009 0.521 0.440 —0.0618 0.9935 1983.995
0.010 0.517 0.443 —0.0620 0.9935 1980.774
0.011 0.514 0.446 —0.0623 0.9935 1977.676
0.012 0.511 0.448 —0.0626 0.9935 1974.588
0.013 0.508 0.450 —0.0628 0.9934 1971.256
0.014 0.506 0.451 —0.0631 0.9934 1968.326
0.015 0.504 0.453 —0.0633 0.9934 1965.183
0.016 0.502 0.454 —0.0635 0.9934 1962.023
0.017 0.500 0.455 —0.0638 0.9934 1958.790
0.018 0.499 0.456 —0.0640 0.9934 1955.458
0.019 0.498 0.452 —0.0642 0.9934 1952.081
0.020 0.496 0.458 —0.0645 0.9934 1948.441
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TABLE 4.12

Ridge Estimates for Model VI

k P* Ρ» Ρ» Ρ» Λ2 F

0.000 0.750 0.233 —0.134 0.1044 0.9969 2703.518
0.001 0.654 0.328 —0.135 0.1031 0.9969 2675.831
0.002 0.609 0.371 —0.136 0.1027 0.9969 2644.111
0.003 0.584 0.396 —0.135 0.1016 0.9968 2620.244
0.004 0.567 0.412 —0.135 0.1007 0.9968 2600.587
0.005 0.555 0.424 —0.135 0.0998 0.9968 2584.780
0.006 0.546 0.432 —0.134 0.0989 0.9968 2521.037
0.007 0.539 0.438 —0.134 0.0980 0.9968 2558.467
0.008 0.533 0.332 —0.134 0.0971 0.9967 2546.604
0.009 0.528 0.447 —0.133 0.0962 0.9967 2535.168
0.010 0.525 0.450 —0.133 0.0954 0.9967 2523.861
0.011 0.521 0.453 —0.132 0.0945 0.9967 2512.654
0.012 0.518 0.455 —0.132 0.0937 0.9967 2501.250
0.013 0.516 0.457 —0.131 0.0928 0.9967 2487.709
0.014 0.513 0.458 —0.131 0.0920 0.9966 2477.9828
0.015 0.511 0.460 —0.130 0.0912 0.9966 2465.934
0.016 0.510 0.461 —0.130 0.0903 0.9966 2453.653
0.017 0.508 0.462 —0.129 0.0895 0.9966 2441.070
0.018 0.506 0.463 —0.129 0.0887 0.9966 2428.209
0.019 0.505 0.463 —0.129 0.0879 0.9966 2414.981
0.020 0.504 0.464 —0.128 0.0871 0.9965 2401.523
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Figure 4.1. Ridge Trace of the Coefficient of logRGDP for the Models I, II, and III

Figure 4.2. Ridge Trace of the Coefficient of logRGDPml for the Models II and III.
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Figure 4.3. Ridge Trace of the Coefficient of logRP for the Models I, II, and III.

Figure 4.4. Ridge Trace of the Coefficient of logRPfor the Model III.
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logRIM = —7.037 + 1.39 logRGDP — 0.318 logRP
(—12.053) (53.4) (—2.95)

logRIM = —6.84 + 0.93 logRGDP + 0.452 logRGDP^
(—11.46) (3.74) (1.9)

— 0.349 logRP
(-3.14)

logRIM = —7.694 + 0.94 logRGDP + 0.465 logRGDP^
(—16.75) (5.31) (2.68)

— 0.818 logRP + 0.629 logRP^ 
(—6.66) (4.99)

Note: The number in parenthesis below each coefficient is a t-ratio.

Minimaxity and Bayesian Estimators

To find the value of k which tends to stablize the estimated coeffi
cients, the ridge trace method was used in the previous section, and k= 
0.001 was chosen. The purpose of this current section is to employ two 
alternative procedures for choosing k and to calculate also the Bayesian 
estimators for import data.

One popular ridge estimator chooses k =a2/02m„. Although 
this may be performed iteratively, the initial calculation of k from this 
formula is given in Table 4.13. Examining the numerical results that are 
included in this table, shows that the k’s are close to interval (0.01, 
0.025).

Another popular ridge estimator chooses k=P<i2/0'0. The 
calculation of k from this formula, that is reported in Table 4.14, shows 
that k’s are close to interval (0.0002, 0.054).

Thisted has computed the condition for minimaxity of Ρσ2/0'0 

as:

1
1-1

λ,2

\ -* 
AP

P > 3

Investigating the results of Thisted’s condition for minimaxity for
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the import data which are given in Table 4.15, shows that for all the 
models, Thisted’s condition does not hold. Thus, the ridge estimator is 
not minimax for our data.

All the above results suggest a value of k close to the value .001 
selected on the basis of the ridge trace. Thus, if ridge regression is used 
to estimate a Greek import function, it is clear that the value of k should 
be small.

In order to obtain Bayesian estimates of the demand elasticities 
for imports with respect to income and price for the Greek economy, 
we follow the theoretical background of chapter four. First, we must 
specify the prior density function for the regression parameters. We 
believe that the demand elasticity for imports with respect to income 
can be described by a normal distribution with mean equal to 1.5 (ela-

TABLE 4.13

Calculation k = S2/02mai; Import Data

Model σ2 02max k

I 0.0043 3.92 0.0010
II 0.0044 28.18 0.0001

III 0.0022 1.96 0.0010
IV 0.0067 0.56 0.0110
V 0.0068 0.25 0.0270

VI 0.0035 1.96 0.0010

TABLE 4.14

Calculation k = Ρσ2Iq'q ; Import Data

Model σ2 P θ'θ k

I 0.0043 3 45.13 0.00020
II 0.0044 4 52.10 0.00033

III 0.0022 5 62.65 0.00018
IV 0.0067 2 1.05 0.01300
V 0.0068 3 0.38 0.05368

VI 0.0035 4 4.54 0.00300
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TABLE 4.15

Thisted's Condition for Minimaxity; 
Import Data

Model Σλ-*. 2λ-ρ Σλ,-* / λ'·

I 5917.2058 5917.1596 1.00
II 13850.4470 11080.3300 1.25

III 16152.0690 12913.2220 1.25
IV 0.0044 0.0038 1.15
V 434.0309 434.0277 1.00

VI 4062.4800 3906.2500 1.04

Note: λρ is the smallest eigenvalue.

stic). We believe also that the smallest value the income elasticity is 
likely to have is 1.0 and the largest is 2.0. This implies that the standard 
deviation S will be equal to 0.25 for the confidence coefficient a = 0.05. 
Therefore, it can be written for Model I that β4 ~ N(1.5, 0.25). We 
believe also that the price elasticity has a normal distribution with mean 
—0.5 (inelastic) and standard deviation 0.25 because we consider that 
the confidence limits are —1.0 and 0. Thus, β2 ~ N(—0.5, 0.25). These 
prior beliefs were obtained on the basis of the survey of the literature in 
Ilouthakker and Magee (1969). The third parameter of Model I is the 
intercept. For simplicity, we make our prior mean for the intercept ap
proximately equal to ordinary least squares estimate. This effectively 
ensures that the Baysian estimate is equal to the ordinary least squares 
estimate. We again assume that the prior distribution is normal with a 
standard deviation equal to 0.25.

For Models II and III, the income elasticity is divided between 
immediate and one prior delayed values. We continue to assume that 
the long run elasticity is 1.5, and we assume that most of this elasticity 
occurs within the current period. Thus, we set means for βχ at 1.0 and 
for β2 at 0.5 with standard deviations equal to 0.25.

In Model III, the price elasticity is also divided between immediate 
and one period delayed values. Although we continue to assume the same 
prior mean for the long run elasticity, we assume that the one period 
delayed elasticity is larger than the immediate elasticity. Thus we specify 
the prior mean for β3 at —0.2, and the prior mean for β4 at —0.3.
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The results of the Bayesian estimators are given in Tables 4.61 
through 4.19. Examining the reported tables shows that the prior vari
ance is large relative to the ordinary least squares variance. That is, 
S2/ σ2 -*■ oo which means that the Bayesian estimator is approximately 
equal to ordinary least squares estimator. Therefore, Bayesian estima
tion does not deal with the multicollinearity problem in this data set.

TABLE 4.16

Ordinary Least Squares, and Bayes Estimates, 
for Model I (Including Prior Information)

Coefficient Prior OLS Bayes

P. —7.0 —7.061 —7.011

Pi 1.5 1.390 1.660

P. —0.5 —0.320 —0.590

V = 0.0048, S* = 0.0625

TABLE 4.17

Ordinary Least Squares, and Bayes Estimates 
for Model II (Including Prior Information)

Coefficient Prior OLS Bayes

P. —7.0 —6.920 —6.9700
Pi 1.0 1.071 1.0041

Pi 0.5 0.380 0.4700

P. —0.5 —0.390 —0.3900

V = 0.0043, S> = 0.0625
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TABLE 4.18

Ordinary Squares, and Bayes Estimates, for 
Model III (Including Prior Information)

Coefficient Prior OLS Bayes

Po —7.0 —7.800 —7.045
Pi 1.0 1.081 1.380
p2 0.5 0.330 0.720
P3 —0.2 —0.810 —0.510
P 4 —0.3 0.630 0.210

σ* = 0.0022, Sa = 0.0625

TABLE 4.19

Price and Income Elasticities from Ordinary 
Least Squares and Bayes Estimates 

(Including Prior Information)

Model 1 II III

SR LR SR LR SR LR

Prior: Income
Elasticity 1.50 1.50 1.00 1.50 1.00 1.50
Price
Elasticity —0.50 —0.50 —0.50 —0.50 —0.20 —0.50

OLS: Incomo
Elasticity 1.39 1.39 1.07 1.45 1.08 1.41
Price
Elasticity —0.32 —0.32 —0.39 —0.39 —0.81 —0.18

Bayes: Income
Elasticity 1.66 1.66 1.0041 1.47 1.38 2.10
Price
Elasticity —0.59 —0.59 —0.3900 —0.39 —0.51 —0.30

Note: The symbols SR and LR mean short run and long run, respectively.





CHAPTER V

SUMMARY, CONCLUSIONS, AND 
SUGGESTIONS

The main purpose of this study was to demonstrate the theory and 
logic of the biased method of statistical estimation, which was introduced 
by the chemical engineer Hoerl and it is called ridge regression.

The first chapter reviewed the assumptions under which the method 
of least squares has some very attractive statistical properties. It was 
shown that one crucial assumption is that the number P of columns in 
X matrix is less than the number T of observations. In other words, 
there is no exact linear relationship among the X variables. In addition, 
it was discussed that when this assumption is only just satisfied, a com
mon situation in practice, a multicollinearity problem exists.

Chapter two developed the theoretical side of ridge regression. The 
effect of multicollinarity on ordinary least squares estimation was ex
plored in the first section. It was shown that, according to the Gauss- 
Markov theorem, the least squares estimator is linear, unbiased and has 
minimum variance in the class of unbiased linear estimators. But there 
is no guarantee that the variance of the least squares estimator will be 
small. In the particular case of multicollinearity, the variances of the 
estimated coefficients tend to be large. It was also shown that multi
collinearity tends to produce least squares estimators that are too large 
in absolute value.

The ridge estimator was defined to be that estimator which mini
mizes the sum of the squared distances of the points from the estimated 
line subject to a constraint on the length of the estimating vector. It was 
shown that as the ridge parameter k increases, the ridge estimators get 
smaller and smaller in absolute size and the ridge regression produces an 
estimator with a smaller variance than ordinary least squares. Because 
the ridge estimator is biased its technique was compared to ordinary 
least squares in terms of mean square errors. It was demonstrated that 
if the ridge parameter is chosen between zero and a2/02miI, the ridge
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mean square error will be less than the mean square error of the ordinary 
least squares estimator. The result arises because as k increases the 
reduction in variance exceeds the increase in bias.

Chapter two concluded with a discussion of two methods of choosing 
the ridge parameter. It was noted that these procedures make k a function 
of the sample data, and, therefore, k becomes stochastic.

Chapter three surveyed the critical analysis of ridge regression that 
have been developed by statisticians outside the classical least squares 
framework. The decision theory of biased estimators was reviewed and 
it was shown that for choosing k without reference to the data the ridge 
regression does not yield a minimax estimator. In addition, the relation
ship between Bayesian statistical inference and ridge regression were 
discussed. It was proven that for choosing the prior mean equal to zero, 
and a common variance for all regression coefficients, there is a particular 
value of k for which the ridge estimator is a Bayes estimator. This close 
relationship between the ridge estimator and the Bayesian estimator 
shows that the ridge estimator is an attempt to incorporate prior in
formation into the estimation process.

Chapter four presented the ridge regression method in practice. Its 
technique was compared to ordinary least squares in the context of 
estimating price and income elasticities for Greek imports. A number of 
specifications were examined. These specifications differed by the amount 
of multicollinearity.

The ordinary least squares estimates show that for Models I and IV 
the system is not seriously different from orthogonality, while for the 
rest of the models a substantial multicollinearity problem is present. 
The employment of the ridge trace method confirmed these results. The 
coefficients of logRGDP and logRGDP.j in Models II and III changed 
as k was increased. This method gave for the import data a small value 
of k. In the interval (0.001, 0.002). Two alternative methods of computat- 
ing k also gave similar results. However, the ridge regression did not 
yield a minimax estimator, while the Bayesian approach gave an esti
mator approximately equal to ordinary least squares.

In conclusion, it appears that the conventional model of Greek im
ports is subject to a substantial multicollinearity problem if lags are 
included in the model. Although ridge estimation provided more stable 
estimators for small values of the ridge parameter, the estimator was 
not minimax. In the case of a lagged price specification, a wrong sign 
was encountered in both the ordinary least squares and ridge estima
tions.
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