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CHAPTER I

INTRODUCTION

Multiple regression analysis has become one of the most widely
used econometrical tools for analyzing economic data. The standard
approach in regression analysis is to use a sample of data to compute
an cstimate of the proposed relationship, and in addition, to evaluate
the results of estimation using statistics such as t, I' and the coefiicient
of determination RS2

The general multiple regression model is written:

y X B 4+ u
TXI1 TXP PXl TXI

where X is a TXP matrix of T observatios on P explana-
tory variables, y isa TXI vector of observations on the dependent
variable, P isa PXl wvector of unknown parameters,and u isa
TX1 wvector of unknown disturbances. The usual method for estimating
B is the method of least squares which involves minimizing the sum of
squares of the residuals under certain assumptions, the method of least
squares has some very attractive statistical properties which has made
it one of the most powerful methods of regression analysis. The funda-
mental assumptions in the general multiple linear regression are that:
E(u) = 0, E(uu') = ¢%I, the TXP matrix X is nonstocha-
stic, and the rank of X is P (number of columnsin X), and P is
less than T, the number of observations. All these assumptions are
icrucial for the estimation process. Therefore, one of the basic assumpt-
ons of the general linear model is:

rank(X) = P and P<T

This assumption states that no column of the X matrix can be written
as a linear combination of other columns of the matrix, so that these
columns are linearly independent vectors; that is, there is no exact

28
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linear relationship among the X wvariables. In other words, there is no
perfect multicollinearity. In matrix notation this is equivalent to saying
that there exists no vector « such that:

ox =0

where o' isa 1xP row vector and x is Pxl column vector. The
reason for this assumption is that the least squares estimator g =
= (X'X)™! X'y requires the inversion of (X'X), and under this assump-
tion it follows that (X’X) is nonsingular, so it can be inverted to obtain

Unfortunately, in most economic applications it is often found that
the rank condition is “relaxed”. In empirical econometrics, the more
typical situation is not one of perfect multicollinearity, but rather one
of a multicollinearity problem. In this case (X'X) is not singular, but
is close to singular. We meet this problem when the rank assumption
isonly just satisfied, that is when some or all of the explanatory variables
are highly, but not perfectly collinear. It is recognized that in this
situation, i.e., the determinant of (X’'X) is close to zero, a less extreme,
but still serious problem arises. It is also known that the problem of
multicollinearity is one of the most significant and difficult problems
in applied econometrics because when multicollinearity is present in a
set of explanatory variables, the least squares estimates of the individual
regression coefficients tend to be unstable and can lead to erroneous
inferences. Therefore, various problems arise in empirical econometrics
when the rank condition is only just satisfied. The question is what
should be done when we are sure that a serious problem of multicolline-
arity exists. We know that several possible methods are suggested for
this problem. These include (Maddala, 1977):

Dropping one or more variables

Getting more or new data

Using prior information

Using principal components of the explanatory variables
Using ratios or first differences

Ridge regression

RN S

The purpose of this study on the one hand is to demonstrate the
theory and the logic of the ridge regression method of estimation, and
on the other hand to apply the technique to a standard estimation
problem in economic models.

The problem selected is the estimation of an import demand function
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and a number of specifications are examined. These specifications differ
by the amount of multicollinearity.

Chapter Two develops the theoretical side of ridge regression. It
begins with the problems that arise when the multicollinearity problem
exists. In addition, the ridge estimator is derived and its optimality is
shown. This chapter concludes with a discussion of two methods of
choosing the ridge parameter.

Chapter Three discusses the critical analyses of ridge regression that
have been developed by statisticians outside the classical least squares
framework. Specifically, the decision theory of biased estimators and
Bayesian statistical inference are included.

Chapter Four presents the ridge regression method in practice.
The estimating power of ridge regression is also compared to the esti-
mating power of least squares method in the case of the estimation of
import demand functions.

Chapter Five concludes the study with a general summary. Sugges-
tions for further research are also included in this chapter.






CHAPTER II

RIDGE REGRESSION

The objective of this chapter is to introduce and survey the approach
and technique of the new method of estimation: Ridge regression, which
was introduced by the chemical engineer Hoerl.

This new method of estimation is called ridge regression because
the basis of mathematics is similar to the method of ridge analysis that
Hoer] used earlier (1959) to describe the behavior of second-order res-
ponse surfaces.

The first section of this chapter discusses the ordinary least squares
estimator and the multicollinearity problem. The deviation of the ridge
estimator and its optimality are presented in the next two sections.
Methods for choosing the ridge parameter are included in the final section.

Ordinary Least Squares and the
Multicollinearity Problem

In the following discussion we consider the general multiple regres-
sion model:

y=Xp +u

where: y is a (Txl) vector of observations

X isa (TxP) matrix of T observations on

P explanatory variables

B is a (Pxl) vector of unknown regression coefficients
u isa (Txl) vector of disturbances.

It is assumed that E(u) = 0 and E(uu') = o2
We know that by the method of least squares, thepoint estimate ﬁ
of the vector B that minimizes the sum of squared residuals (e’e) is:

§ = (XX)1 Xy
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According to the Gauss-Markov theorem, the least squares estima-
tor ﬁ is linear, unbiased and has minimum variance in the class of
unbiased linear estimators. That is, the variance matrix of any other
linear unbiased estimator exceeds the variance matrix of the least
squares cstimator by a positive semidefinite matrix.

There is no quarantee that the variance of the least squares esti-
mator will be small. The variance of the estimator can be shown to be:

V@) = E@-p) G-pY
= AN’
where A = (X'X)"1X’. This is:
V(@) = o¥X'X)™?

and shows that the magnitudes of the variances of the least squares
estimators depend on the X matrix.

A more useful approach to determining the variance is to partition
the X matrix as follows:

X =[x X,]

where x; is any column, and X, consists of all the other columns.
By the theorem on partitioned matrices (Goldberger, 1964) it can be
shown that:

1 —_

G -GH’

x,'%,

.l
XX = }
D

x2'x1 XZ'Xa —_— 'HG’ D_1+ HGH,

where G = [x/'x -xX,H]? = (X,'X))

H = (XX Xo'x

This latter term H is the ordinary least squares estimator of the re-
gression coefflicients in

x1=X2b+v
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and G is the estimated residual sum of squares from this regression.
This can be written in terms of R? from this regression as:

G = [n52(1-R3)]?

where R?2 is subscripted to distinguish this regression from the com-
plete model. Hence, the first row of (X'X)! is:

1 'h-o ’h2 'hp
| n5,*(1-R;?) nS,%(1-R;?) nS%(1-R,®) 77 nS;%(1-R}?») |

This shows that:

V) = saaRey
and in general,

VB = asarwy

The coefficient of determination obtained by regressing x, against the
other independent variables, which is written R_.2, is often called the
degree of multicollinearity in the matrix X. The above shows that
the larger is R.?% the longer is V( B,).

Multicollinearity also tends to produce least squares estimates,
B, that are too large in absolute value. It is easy to see this by examin-
ing the definition of variance:

V(B) = E[B,-E(B)P
= E(B,)°_+[E( Bx)1* — 2E(B)E( Bp)
= E(3,)? + B,2 — 28,2
= E(B,)* — B,?
where E(B,) = B, follows from unbiasedness of the least squares

estimators. Thus, the variance of Bp is the difference between the average
length (squared) of §, and the true length (square of B,), as the

y By
V(B,) is larger, so the longer will be §, relative to B,.
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In sum, the greater the degree of multicollinearity in the X ma-
trix, the longer will be the expected value of the vector of estimated
cocllicients.

Derivation of the Ridge Estimator

The central idea of ridge regression is to choose an estimator that
is similar to ordinary least squares, but has a shorter length. The ridge
estimator Is delined as that estimalor which minimizes the sum of the
squared distances of the points from the estimated line subject to a con-
straint on the length of the estimating vector.

Let the ridge estimator be f*, and the computed points be de-
fined by:

y* = X*B
The residuals are:
e* =y —y*

and the ridge estimator minimizes the sum of the squared e* values
subject to a maximum length of p*. Let this maximum be denoted by I
Thus, the task of finding B* is a lagrangean problem. The lagrangean
expression is:

L = e¥e* ++ k(B*p* — I

Differentiation of L with respect to f* gives:

oL de* de* op* op*

o _ 9% o« o % P px P
7 3p*e+ p*e + kap*[a +kaB*B
—_ ae* * *
we know that e* =y — y*
=y — Xp*
therefore, the derivative of e* with respect to p* is:
oe*

rr
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and 22— _9X'e* 4 2kp*

op¥
= —2X'(y—y*) + 2kp*
= —2X'y + 2X'Xp* + 2kp*
Setting this equal to zero and solving for B* yields:
B* = (X'X + kD) X'y

This is the ridge regression estimator for the vector of parameters §,
which gives us the best fit to the data for any estimator of given length.
If k=0, this implies (3*='(§ (we have least squares estimators),
when k — oo, then p* — 0. This means as k increases, the
ridge estimators get smaller and smaller in absolute size.

In addition to reducing the absolute size of the estimating vector,
the ridge approach also produces an estimator with a smaller variance
than ordinary least squares. By definition, the variance-covariance
matrix of B* is given by:

vE*) = E { [p* — E@")] [B* — E@E"]"}

Substituting y = X8 + u into the formula of ridge regression
estimator yields:

B* = (X'X-+kI) X/(XB4u)
= (X'X4kI)! X'XBH(X'X+kI)X'u
taking expected values of both sides gives:
ER*) = E[(X'X+kD)? X'Xp 4+ (X'X+kD)* X'u]
= E[X'X+kI)? X'XB] + E[(X'X+kI)™ X'u]
= (X’X4+k)2X'XB + (X'X+kI)X'Eu
= (X'X4kI)X'XB
Therefore:

p* — E(B*) = [X'X4+k)X'XB + (X'XH4kI)1X"u]
—[(X’X+kI)1X'XB]
= (X'X+kI) X'y
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This can be substituted into the expression for the variance of p* to
yield:

V(E*) = E {{(X'X+kI)X"u] [(X'X+kI)X'u] }
= E[(X'X+k) X 'uu'X (X'X4kI)1]
= (X'X+kI)?X'E(ur’) X (X' X+kI)?
= (X'X+kI) X 2IX(X' X+ k)1

Therefore, the variance-covariance matrix of the ridge regression esti-
mator is:

VE*) = of(X'X+kI) X' X(X'X+kI)?
If k=0 this implies that
VE*) = o*(X'X)? = V(p)

As  k — oo, then V(B*) - 0. This means that the variance
of the ridge regression estimator is a decreasing function of k.

The Optimality of the Ridge Estimator

The optimality of the least squares estimator stems from the fact
that it has minimum variance in the class of linear, unbiased estimators.
Because the estimator is unbiased, minimum variance implies minimum
mean square error. That is, the variance E[Ep — E(Ep)]2 i1s the same
as the mean square error ~ E[§,—,]%

However, the ridge estimator is biased. This is easily seen by noting
that the ridge estimator is a linear transformation of the least squares
estimator, as shown by the following argument:

¥ = (X'X+kI)1 X'y
= (X'X+kD)* X'X§

by the definition of the least squares estimator "5 Adding and sub-
tracting kI to the X'X term which premultiplies E yields:

B* = (X'X+kI)?T [(X'X+kI) — KkI]§
= [ —k(X'X+kI)1]3
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and the expected value of p* is therefore given by:
E@*) = [I—kX'X+kI)]p

Hence, the bias is given by:
E(@*) — B = —k(X'X+KkI)7 B

when dealing with a biased estimator, such as f8*, the appropriate opti-
mality concept is mean square error. In order to examine the mean
square error of B* it is useful to reparametrize the regression model
into canonical form as follows:

Yy=Xp+u=120 +u

where
Z = PX
® = Pp
and
PP =PP =1
P =P

The matrix P is the matrix of normalized characteristic vectors of
X'X such that:

Z'Z = PX'XP = D = diag(h, Ay, o) Ay)

where Aj,)g,...,A, arethe P characteristic roots of X'X.
The least squares estimator of the model in canonical form is:

6 =207y
and this is a linear transformation of fg because:
6 = (ZZ)'Z'y = (PX'XP)1P'X'y

= (PIX'XP)P'X'y = PYX'X)'PP'X'y
—P3

Similarly, the ridge estimators bear the same relationship

0* = P’ p*
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The mean square errors of @ and B and of @* and B* are
equal:

MSE(0*) = E[(@*—0)’ (6*—0)]
— E[(0*—0) 'P'P(0*—0)]
= E[(PO*—PO)’ (PO*—P0O)]
= E[(g*—B) " (B*—B)]
— MSE(8*)

Thus, the comparison of MSE(8*) with MSE(E) is the same as the
comparison of MSE(®*) with MSE(@). By definition, the mean
square error can be decomposed into variance and bias components:

MSE(©*) = E[(0*—E0©*) (6*—E@*)'] + E[(0—E0*) (0—E0*)']
= V(0*) + E[(6—E0*) (6—E8*)]
Using the results for variance and bias derived previously we have:
MSE(@*) = o2 [(ZZ+kI)1Z'Z (Z'Z+kD)1] +
+ [K(Z'Z+kI)? Ok (Z'Z+kI)1 0]
= (Z’Z+KkI) (¢*2'Z+k0O0O’) (Z'Z+KkI)?
= (D+4KkI)? (6®D + kOO®’) (D4-KkI)?

The trace of this MSE(0®*) is the sum of the mean square errors of the
individual estimators:

tr MSE(©%) = tr[(D4+kI) (62D4-k0@’) (D+kI)1]

P

2, Tor K0
Differentiation with respect to k yields:

atr MSE(0*) _ 2 » (k@,*—0?)
ok - p=1 (7\ +k)a
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This derivative will be negative if (k®,2—o6?% < 0 for each p,
since k is always nonnegative, and since the characteristic roots of X'X
are positive since the matrix is positive definite. Thus, if k is chosen
between zero and o¢2%/0%,,, the derivative will be negative and the
ridge mean square error will be less than the mean square of the ordinary
least squares estimator (k=0). The result arises because the reduction
in variance exceeds the increase in bias. The contribution of bias is gi-
ven by:

X k20,2 dB k) 2
B = 2, 5 i %2 5 +k)3 >0

and the contribution of variance is given by:

2 Apo?

p=1 (lp.-l_:k)2

and the latter decreases as k increases.

Methods for Choosing the
Ridge Parameter

Although there always exists a positive value of k such that the
ridge regression estimator has a smaller mean square error than the least
squares estimator, the best method for selecting a particular value of k
is not obvious. The question is how to choose the value of the unknown
ridge coefficient k>0 and consequently, a unique p* without using
information other than the sample information.

There are a number of alternative suggestions which have been
proposed for selecting the particular value of k. In this section the
methods of choosing k that are easy to compute and used in practice
by researchers are discussed.

The earliest method for choosing the unknown coefficient k is
the graphic technique which Hoerl and Kennard (1970) have suggested
based on the “Ridge Trace”.

The ridge trace is a simple graph of the values of the ridge regression
estimators on the vertical axis plotted against the small corresponding
values of k in the interval zero to one. The trace includes one curve
for each coefficient. The purpose of the ridge trace is to give the analyst
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a picture of the effect of the multicollinearity and to assist further to
choose the lowest possible value of k for which the estimate coefli-
cients have stabilized. By stable we mean that the coefficients are not
sensitive to small changes in the estimation data. The value of k at
which the coefficients are stable yields the desired set of coefficients.

Criteria for choosing k have been outlined by Hoerl and Kennard
(1970). The criteria are reproduced as follows:

1. At a certain value of k the system will stablize and have the
general characteristics of an orthogonal system.

2. Coefficients will not have unreasonable absolute values with
respect to the factors for which they represent rates of change.

3. Coefficients with apparently incorrect signs at k=0 will have
changed to have the proper sign.

4. The residual sum of squares will not have been inflated to an
unreasonable value. It will not be large relative to what would
be a reasonable variance for the process generating the data.
(p. 65).

An alternative procedure uses the fact that in theory k=52%/0n,«

In this procedure, an initial ordinary least squares regression is estimated
on the transformed model y = Z® -+ u and the maximum @§ is
used as an initial value of k. Using this value, an initial ridge regres-
sion is estimated and this yields a second estimate ©,,, which in turn
yields another estimate of k. This procedure is repeated until k con-
verges. Finally, given the selected estimate of the ® vector,the £ ve-
ctor is estimated from:

g% = P'O*

It should be noted that these procedures make k a function of
the sample data and, therefore, k becomes stochastic. The properties
of the ridge estimator when k is stochastic are not well known, but
are discussed in the next chapter.



CHAPTER 111
CRITICISMS OF RIDGE REGRESSION

The purpose of this chapter is to survey the critical analyses of
ridge regression that have been developed by statisticians outside the
classical least squares framework. Two major approaches are considered,
namely, the decision theory of biased estimators and Bayesian statis-
tical inference.

This chapter is divided into five sections. The first section represents
the decision theory approach to estimation. The minimax analysis of
regression is discussed in the second section. A discussion of William G.
Brown and Bruce R. Beattie’s critique of the ridge regression method
is included in section three. The two final sections discuss the Bayesian
statistical inference, and Bayesian inference and ridge regression.

The Decision Theory Approach
to Estimation

In econometrics we are concerned with the use of sample data to
lIearn about the unknown economic parameters. Our interest is in finding
good point estimates of economic parameters. Typically, a “best” esti-
mator is defined to be one that predominates over any other when com-
parative criteria had been used.

It is well known that for comparison of unbiased estimators, the
variance criterion is used and the estimator is chosen that has the smal-
lest variance. When the estimator is biased, as in the case of the ridge
estimator, a better comparison of the precision of estimators would be
obtained by comparing their mean square errors.

Furthermore, the unbiasedness property plays a more important
role in the theory of interval estimation than it does in point estimation.
This is because_confidence intervals are centered on an unbiased estimate
and because the width of the interval is equal to the estimated square
root of the variance of the estimator. The smaller variance for the biased
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estimator implies that it is a more stable estimator than is the unbiased
estimator.

The justification given for ridge regression in the last chapter was
that, for a range of values of k, the sum of the mean square errors of the
ridge estimators of the regression coefficients is less than the sum of the
mean square errors of the ordinary least squares estimators. That is:

) p
2 E@*—B8) < 2 E(@,—B)

p=1

This reduction is obtained because the variances of the ordinary least
squares estimators exceeds the sum of the variances of the ridge esti-
mators plus their biases squared.

The preceding justification weights the squared errors for both
estimation techniques equally. More generally, the performance of an
estimator might be evaluated using a weighted sum of squared error
such as:

p

z Wp (Bp* - (3[.\)2

p=1

In decision theory, such a function is called a loss function and, in gene-
ral, it would be written (Greenberg and Webster, 1983, p. 160):

L(* B) = @*—B) " W(E*—p)

where B* is a vector of estimates of the parameters contained in the f
vector, and W is a positive semidefinite matrix of weights. The parti-
cular example used here is the case of a quadratic loss function. The
problem, in terms of decision theory, is to decide on an estimating for-
mula that will minimize the loss function.

However, the loss function is stochastic, and thus the size of the
loss associated with any estimator will vary depending on the sample
data. Decision theorists, therefore, consider the expected value of the
loss function, which is called the risk function:

R (p*, B) = E[L(B*, B)]

Our objective is to decide on an estimating formula $* which mini-
mizes, in some sense, the risk function.
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Usually, it is not possible to find an estimator which globally mini-
mizes the risk. Thus, what is undertaken is a comparison of existing
estimators in terms of their risk. In cases where one estimator has the
lowest risk for one range of parameter values, and another estimator
has the lowest risk for the remaining range of parameter values, a fre-
quently used criterion is the minimax criterion.

According to the minimax criterion, we find the maximum risk of
each estimator and we choose that estimator which minimizes this ma-
ximum risk. An estimator f* is minimax if

max R (B* B) < max R (B*, B)

for all B*.

We note that another criterion for choosing a “good” decision is the
criterion which is based on the idea of admissibility. For this case we
eliminate the “bad” decisions.

If we have the estimators p* and @*, then @* issaid to domi-
nate f*, when the following relationships hold (Maddala, 1977, p. 54):

R(B* B) < R(B* B) for all B
and R{p*, B) < R{B*¥ B) for some §.

Minimax Analysis of Regression

It was noted in the previous section that when we drop the assump-
tion of unbiasedness, we have a wider class of estimators which includes
biased estimators. To analyze this class, decision theory is used which
starts with the loss function.

Now to discuss the minimax analysis of regression, we assume again
the standard regression model:

y=Xp +u

where E(u)=0 and E(uu')=¢?l.  We want to find a linear
estimator B* such that:

g* = Wy

and from the assumptions above Ep* = WXB since Eu=0. We
26
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know from the previous section that the risk function for a quadratic
loss is defined as:

R(8*, B) = E[(B* —B)' (B* — )]
From this relationship we have (Greenberg and Webster, 1983, p. 166):

E[(@* —B) " (B* — @)]
= {[(3*—Ep*) — (B—EB*)]’ [(B*—Ep*) — (B—EB%)
= E[(p*—EB*)’ (B*—EB*)] + [(Ep*—p)’ (ER*—B)]
Substituting B*=Wy and EB*=WXB yields:
E[(g*—B) ' (B*—B)]
= E[(Wy—WXB)’ (Wy—WXg)] + [(WXB—B)' (WXE—B)]
= E[(y—XB)’ W'W (y—XB)] + [B' (WX—I)" (WX—I) p]
= o tr WW’ + ' (WX—I)’ (WX—I) B.

Investigating the last expression shows that the first term  o*#rW'W is
independent of [ while the second is a positive semidefinite quadra-
tic form in $ and it does not involve @*. If B — o, then this
term will grow without bound.

All the above implies that the risk of an estimator that is dependent
of B will be affected by large values of . When WX=I then:

R (% 8) = E[(*—B)’ B*—B)]
= o2 tr WW’

This means that we have a linear estimator that is minimax in the class
of linear estimators. When W=(X'X)1X’' then WW'=(X'X)"L.
This is the case of the least squares estimator and shows that it is mini-
max in the class of linear estimators.

Regarding the ridge regression estimator we can see that this esti-
mator is dependent on 8 because k is defined as:
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and © is a function of the coefficient vector f. Thus, for large values
of at least one ©; the risk of the ridge estimator R(©®*,0) will be
greater than least squares estimator R(®,») because the latter does
not depend on the ©,'s. Therefore, choosing k without reference to
the data will not yield a minimax estimator.

Hoerl, Kennard and Baldwin (1975) suggested for choosing k based
on data:

Pg2
TR

00

Thisted (1976) has shown that this formula is minimax if and only if:

>2+;, P>3

where 2, is the smallest root of X'X. To meet this condition A, must
be large. For the case of the multicollinearity problem 2, is small, so
the condition of minimaxity is unlikely to be met. Therefore, people who
believe the minimax criterion do not suggest the ridge regression method
as a method to solve the multicollinearity problem. Other criteria and
approaches such as admissibility might imply different conclusions. For
example, those who use in their analysis the criterion of admissibility
suggest that we can use the ridge regression method to solve multicol-
linearity because the ridge estimator dominates the least squares esti-
mator in terms of mean square error.

Prior Information ard
Ridge Regression

Brown and Beattie (1975) suggest that the ridge estimator may be
most appropriate in the case where the researcher has prior information
about the signs of the unknown regression coefficients. Their statement
is as follows:

. . ridge estimates can also be unreliable and misleading
under certain conditions. To avoid erroneous conclusions
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from ridge regression, some prior knowledge about the true
regression coefficients is helpful. A theorem on expected bias
implies that ridge regression will give much better results
for some economic models such as certain production function,
than for others because of smaller expected bias ... on the
other hand ridge estimation of other economic models, such
as certain demand functions, could give very poor or mis-
leading results ... .(p. 21).

Brown and Beattie’s assertions and suggestions are products of
the following analysis. Consider again the formula of bias:

3.1) E(@*) — B = —k(X'X+kI)7p

which was defined in the last chapter, third section.
Now we consider the following regression model for the simple case
of two standardized explanatory variables:

Y =8% + By + u
and the ridge regression normal equations are:

(x'x+kI)p* = x'y
or (1+k) (ry2) T Bt Ty

Tia (1+k) g.* Tay

where 1y, isthe simple correlation coefficient betweenx; and x, and
r), is the simple correlation coefficient between x; and y, j=1, 2.
Now the inverse of (x’x+kI) is:

, _ _ (1+k) —T
(x'x+4kI)? = (IFk)? —r3, 1+k) _12 o
— Ty (14-k)
| (14+k)2—r%y (14+k)? —r?, _
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and consequently:

, an (1+k) —r »
CxHEDT = R o, O T e ]
—Ty (1+k) B
L (14+k)® —r?, (14+k)? — 2%, 4 L 2 i

(1+k)B; — riB, -l
(14+k)? —r%,

—ToB, + (14+k)B,
|_ (1+k)2 — 12,

according to the last expression for B,* and B,* equation (3.1)
yields:

E(p,*) — B; = e (B — ]

(1+k)2—r

B(B) — P = gy [A+K8 — n]

Investigation of the above equation implies:

1. When X, and X, are positively correlated the expected
bias of B,* and B,* will be smallestif B, and B, have the
same sign and they are also of about equal magnitude.

2.If B, and B, have opposite signs and 1, > 0 then
the expected bias of B,* and B,* will be greatly increased.

3. If X, and X, are negatively correlated then the bias
squared will be smallest when f, and B, differ in sign and they are
about equal in absolute magnitude.

Also, Brown and Beattie (1975, p. 31) show that all of the above
results can be generalized to the case of P standardized explanatory
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variables. They proved that the bias of the ridge estimate of the jth
standardized coefficient can be expressed as (1975, p. 31):

)
E(BJ*)_BJ = IIX:"{; 121 B*n B

where A* = (x'x+kI), ¢;; is a cofactor of A* @,*=—1.0 if
i=j and i#j, B*;; denotes the ridge estimate of the coelficient for
the ith variable, where x; has been regressed on the P—1 remaining
explanatory variables. Investigation of this general case gives the same
result as previously discussed, i.e., the bias and mean square error will
be smaller as most of the @’s have the same sign and 8; is approxima-
tely equal to the average of the other P—1 explanatory variables.
Thus, Brown and Beattie advocate the use of ridge regression only when
the signs of p’s are the same such as in the Cobb-Douglas production
function, because the ridge regression for other cases yields a larger bias
and thus poor results.

I would like to take this opportunity to emphasize that unbiased-
ness plays no important role in the theory of point estimation. Therefore,
the bias by itself is not an important criterion for checking the results
of the estimation. Also, the purpose of ridge regression is to reduce the
high variance of the estimating coefficients by adding some bias. Its
focal point is the mean square error and not the bias. Therefore, the
question is: To what extent is the magnitude of the mean square error
and not the magnitude of the bias. For solving multicollinearity the ridge
regression method of estimation can be used in spite of their analysis
because there always exists a value of k>0 such that:

MSE@E*) < V(B)

and the coefficients are stable.

Bayesian Statistical Inference

A more general approach to the incorporation of prior information
in regression is to use Bayesian statistical inference. Bayesian inference
is based on Bayes theorem which states that the posterior probabilities
density function (pdf) is proportional to the prior probabilities density
function times the likelihood function:
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posterior (pdf) o prior (pdf) x likelihood function

where o sign denotes “proportional to”. The prior probabilities density
function incorporates all prior information, while the likelihood function
incorporates all the sample information. Therefore, the Bayesian appro-
ach combines a prior distribution with sample information to form a
posterior distribution. The mean of the posterior distribution of the
parameter vector B gives the Bayes estimator E

Applying the Bayesian approach to the problem of estimation of
the linear regression model:

(3.2) y=XB +u

the posterior distibution for B, which is conditional on ¢, is pro-
portional to the product of the prior distribution for B and the likelihood
function. The sample information for the linear regression model is
given by the data on the dependent and explanatory variables. The data
are given by the matrix D defined as:

l
= (y } X)
TX(PX1) TX1 TXP
It is well known that if x has normal distribution with mean p

and variance o¢% or x ~ N(u,o?), then the probability density
function of x Is defined as:

p(x) exp [ —o5 (x—)]

1
V2ot

and by definition, the likelihood function is given by the following
formula:

T
Liwot) = [1 = exp [—g; (x—w?] =

1:0'2

1 T
= @roapE P [— Z x—w?]
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To find the Bayes estimator for f, if we assume for the linear

regression model (3.2) that u ~ N(0, 6?I) and wu; areindependent
random variables, then the likelihood function for the sample value is:

1 1
L@ sly) = Tratra™ oXP [—g5 wu ]
or (Judge, 1982, p. 228):
1 1 '
LB, ofy) « — exp[— 55 (y—XB)' (y—XP) ]

The exponential term in the likelihood function can be written in
terms of the ordinary least squares estimator § using the following
argument. Expanding the quadratic form yields:

(y—XB)’ —XB) = vy — @FX'y) — X'y + pX'XP

Substitute X’Xﬁ for X'y (the normal equations of ordinary least
squares) yields:

(y—Xp) ' (y—XB) = yy — FX'Xp — XX} + pX'XP

Add the two terms B'X'XE — §'X'y and @F'X'Xg—yX{, both
of which are zero by the normal equations. Combining terms we obtain:

(y—XB) ' (y—XB) = (y—XB) ' (—XB) + B—B'X'XE—P)
but from ordinary least squares theory:
$* = (y—Xp) ' 3—Xp) /n
where n = T—P. Hence:
(y—XB) ' (y—XB) = ns* + (B—P) 'X'X(E—P)

and the likelihood function is:

LB, cly) = %r exp{ — % [nsa'l'(ﬂ—ﬁ)'X'X(ﬁ—ﬁ)] }
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In order to obtain the posterior distribution we must specify the
prior density function. If prior information about f can be described
by a normal distribution with mean vector {, and covariance matrix
vZA-l or B~ N(B, v2A7!), then the prior density is (Greenberg
and Webster, 1983, p. 194):

8B @ o exp [— - (B—B) " AJv: (B—py)]

The product of this prior density and likelihood function is:

2+ (B—B) X' X(B—38
p(B/o) c« v T exp { _%_ [ ns (8 ﬂ) B ‘3)

P
+ (@) o (B8 1)
The quadratic form can be expanded as:
— -12— [ns% 4 B’ ()—(;TX %) B8 4 other terms]

Judge (1982, p. 228) shows that this may be written:

= X'X =
33) — g e+ B (T + 5 ) 6
where
= XX, AT [xx.,A_]
(3.4) p=’az+-v—2 [Gzﬂ+ﬁﬂo

Therefore, according to the above analysis the posterior density of B can
be written:

BP/o) o v emp— - { — 3 et + —f) (I +

al

+ éﬁ ) (ﬂ—ﬁ) + terms not involving p]}

v
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This is a normal distribution, with mean _E, and covariance-variance
matrix [X'X/o? + A/v¥]"L. Thus, B is the Bayes estimator
of B

Add and subtract B, to the right hand side of (3.4) and write the
—B, term as:

XX A
t

Bo

2

This enables the term to be brought inside the second matrix expression
on the right hand side of (3.4) and the A /v?® terms cancel. The result is:

- -
X'X A
+ =

v2

E=I30+ Xl

({3_[30) = B, + W( [3—30)

62

-1

where the matrix W = ( XX + A ) )'{_z'

o2 v2 c

Finally we have:
B = (1—W) + W3

Therefore, B is a weighted average of B, and B.

Bayesian Inference and
Ridge Regression

It was shown in the previous section that the Bayes estimator of
B is
AT lxx LA,
7 .

X’_}( | va BO

(3.5)

I
Il

If we choose the prior mean B, =0 and A =1I; this yields:
-, e ow, T
E=lxx 1 | {Xy‘
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We know that v2 is the common variance of the prior distribution
of B. When k = o%/v? we obtain:

B =p* = (X'X+KI)|1 Xy

This is the ridge estimator, therefore, for k=c?/v? the ridge estimator
is a Bayes estimator. The question which arises here is if we can assume
that the prior mean B, = 0 and that all regression coefficients have
a common variance. This seems an unlikely characterization of prior
beliefs and thus forms the basis of the Bayesian criticism of ridge regres-
sion.

The close relationship between the ridge estimator and the Bayesian
estimator shows that the ridge estimator is an attempt to incorporate
prior information about the unknown parameters f.

In the case of multicollinearity, the researcher usually doubts the
accuracy of the sample information. That is, the researcher obtains
sample results that conflict with some prior information. In particular,
the researcher believes that the true parameters are closer to zero (smal-
ler) than the sample estimates. Thus, the ridge estimator which is an
average of a zero vector and the sample estimates, represents a reason-
able approach to reducing the size of the regression coefficients.

We can be less restrictive in the specification of v? and f, If
we choose a different prior variance for each coefficient (v,2 + v,% +
+ ...+ v.?), we obtain:

k, = o?/v®
k, = o*/v,?

and so on. This yields a “generalized” ridge estimator:

Bs* = [X'X + N X'y

where
P kO ... 0 =
n= Okz...o
0 0 ...k

Further, we can select B, to be nonzero and obtain the Bayes estimator
using formula (3.5).






CHAPTER IV

AN APPLICATION OF RIDGE REGRESSION:
DEMAND FOR GREEK IMPORTS

The aim of this chapter is to demonstrate an example where we
can see ridge regression at work in data analysis in a realistic setting.

Although empirical results are presented here, and real-world data
is used, no statement is made about the estimating model or results
significant to economic theory, because the objective is demonstration,
and not model determination. For this purpose we also assume that none
of the other problems of empirical econometrics, such as heterosceda-
sticity or autocorrelation are present.

This chapter is divided into four sections. The first discusses the
models and data used in the estimation procedure. The second section
develops the least squares method and the measures of multicollinearity.
The ridge regression estimates and ridge trace method of choosing k
are presented in the third section. The final section is devoted to choosing
k using prior information and to employing the minimax criterion for
the ridge estimates.

Model and Data

In our discussion, we have chosen an example based on aggregate
data concerning import activity in the Greek economy. It is assumed
that a linear relationship exists between the dependent variable imports
(RIMP) and two explanatory variables income (RGDP), and relative
prices (RP) and a disturbance term wu. For the term wu it also is
assumed that it is a random quantity, independently distributed with
zero mean and constant variance o2. The description of the variables
in the study is given in Table 4.1.
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TABLE 4.1

Description of Vartables in the Study

Variables Symbol Description

Imports RIMP Imports, cif. Billions of 1975
Drachmas

Income RGDP Gross Domestic Product. Billions of 1975
Drachmas

Relative Prices RP Import Unit Value/GDP Deflator
1975 = 100

Note: The variable RP is defined by the formula:

_ Unit Value of Imports (UVIMP)

RP Greek Prices

We consider the following specifications for the unstandardized
variables:

Model I: log RIMP = B,+p, log RGDP + 8, log RP + u
Model II: log RIMP = B,+B, log RGDP + B8, log RGDP_;
+ Bjlog RP + u
Model III: log RIMP = B,}p, log RGDP + B, log RGDP_,;
+ By log RP + B, log RP; + u
and, for the standardized variables:

Model IV: log SRIMP = B, log SRGDP + 8, log SRP + u
Model V: log SRIMP = B, log SRGDP + B, log SRGDP_,

+ Bs log SRP 4+ u
Model VI: log SRIMP = @, log SRGDP + B, log SRGDP_,;

+ B3 log SRP + B, log SRP; + u



Rigde Regression 415

The ith observation of each standardized variables Z is derived from
the corresponding unstandardized variable X as follows:

Xi_'x

1 -
\/n—_1 T (X, —Xp

According to economic theory, the explanatory variable gross
domestic product should positively influence imports. Contrarily, im-
ports should increase as relative prices decrease. In mathematical nota-
tion, the above can be expressed as follows:

Zi=

oRIMP _ . oRIMP _ . oRIMP _ ~ oRIMP _
9RGDP ~ = ' 2RGDP, ' T GRP ' TPRP.,

Therefore, according to economic theory we expect from the estimation
of the coefficients of the models positive signs for the coefficients of
RGDP and negative signs for coefficients of RP.

The coefficients B; and P, of Model I are the elasticities with
respect to income and price, respectively. In mathematical notation
we have:

E __ dlog RIMP B _

RIMP,RGDP 3]0g RGDP ’ RIMP,RP

dlog RIMP

olog RP

The calculation of elasticities for all the models is given in Table 4.2.
TABLE 4.2

Calculation of Elasticities

Income Price
Model Short Run Long Run Short Run Long Run
I B N B: B
II B B1+B, Bs Bs
1 B BB Ba PatBs
v ﬁl ) Bl__ ﬁz B2
v b Brtpa o Bo
VI B futfs s Bt

Note: The coefficients, Ei’s, of the explanatory variables, X;’s,
are defined as follows:

s Srim
Bl - Bl S X
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The data to be used in the analysis is given in Table 4.3, and was
obtained from Interrnational Financial Statistics, English Year Book 1981.
This is an historical data set with observations indexed by time, and
consists of thirty observations on the dependent variable IMP and three
explanatory variables, GDP, RGDP and UVIMP for the years 1951
through 1980.

TABLE 4.3

Annual Data on Greek Ecoromy; Import Data
(Billions of Greek Drachmas)

Year IMpP UvimMp GDP RGDP
1951 5.98 23.2 39.4 145.5
1952 5.19 23.7 41.3 146.8
1953 7.16 35.6 541 167.5
1954 9.90 42.0 62.4 172.6
1955 11.47 42.3 721 185.8
1956 13.91 44.2 83.1 200.7
1957 15.73 451 89.5 215.0
1958 16.95 41.4 93.8 233.1
1959 17.01 411 97.5 241.5
1960 21.06 39.9 105.2 202.1
1961 21.42 39.3 118.6 280.2
1962 21.04 38.9 126.0 284.4
1963 2443 38.8 140.8 313.2
1964 26.55 401 158.0 339.3
1965 34.01 40.6 179.8 370.9
1966 36.69 41.2 200.0 393.6
1967 35.59 40.8 2161 415.2
1968 41.80 411 234.6 442.8
1969 47.83 M1 266.5 486.7
1970 58.75 42.9 298.9 525.4
1971 62.94 444 330.3 562.9
1972 70.44 48.3 377.7 612.8
1973 102.75 57.6 4841 657.6
1974 131.56 84.8 564.2 633.7
1975 172.02 100.0 672.2 672.2
1976 221.82 108.5 825.0 714.9
1977 252.15 116.6 963.7 739.5
1978 287.73 127.0 1,161.4 788.9
1979 356.82 155.2 1,430.9 818.8
1980 452.88 209.4 1,7221 832.3

Source: International Financial Statistics, English Year Book 1981.
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Measures of Multicollinearity

It was demonstrated in the previous theoretical discussion that
when there are strong linear relationships among the explanatory va-
riables, the least squares estimates of the individual regression coefficients
tend to be unstable. The extent of multicollinearity and the estimating
power of least squares method for the models can be shown by the re-
gression results. The least squares fits are:

logRIMP = —7.063 + 1.391o0gRGDP —  0.31 logRP
(—12.076) (53.38) (—2.91)
logRIMP = —691 4 1.069 1logRGDP + 0.31 logRGDP_, —
(—11.26) (2.73) (0.82)
—0.33 logRP
(—3.0076)
logRIMP = —7.77 + 1.077 logRGDP + 0.33 logRGDP_, —
(—16.58) (3.87) (1.21)
— 0.81logRP + 0.63 logRP_,
(—6.57) (5.037)
logSRIMP = 0.96 1o0gSRGDP — 0.052 logSRP
(54.40) (—2.97)

logSRIMP = 0.74 logSRGDP + 0.22 logSRGDP_, —
(2.78) (0.84)

—  0.056 logSRP
(—3.067)

logSRIMP = 0.75 logSRGDP + 0.23 logSRGDP_;, —
(3.95) (1.24)

— 043 10gSRP -+ 0.104 logSRP_,
(—6.71) (5.15)

The number in parenthesis below each coefficient is a t-ratio.
All the regression results are displayed in Tables 4.4, 4.5, and 4.6.

27
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TABLE 4.4

Eigenvalues and Condition Number for Each Model

Model I II I1I vV VI
Eigenvalues
M 0.013 0.0095 0.0088 16.18 0.048 0.016
b 5.650 0.0190 0.0180 41.82 18.180 0.081
A 1692.730 5.4100 0.0810 65.770 8.640
' 2659.5500 8.7100 3214.910
As 3243.8300
Condition :
Number 130,210 279,952.63 368,617 2.58 1,370.208 200,931.87
Amex /)‘m]n

TABLE 4.5

Coefficient of Determination R,* Against
the Explanatory Variables and R?
from Regression

Model I II oI

Dependent
Variable
logRGDP 0.9966 0.9966
logRGDP._, 0.9965 0.9965
logRP 0.2427 0.2776 0.6962
logRP., 0.7020

R2 0.9935 0.9937 0.9969

Note: The results of Table 4.5 are the same for Models IV, V,

and VI.



Rigde Regression 419

TABLE 4.6

Correlation Matriz of Coefficients

Variables Intercept logRGDP logRGDP.; logRP

Model I logRGDP —0.6800
logRP —0.9727 0.4926
Model II logRGDP —0.3280
logRGDP_, 0.2849  —0.9977
logRP —0.9719 0.2466 —0.2148
Model IIT logRGDP —0.3079
logRGDP._, 0.2618 —0.9976
logRP —0.3106 0.1551 —0.1469
logRP_, —0.3633 0.0063 0.0099  —0.7611

Note: The correlation matrix of coefficients is symmetric.
The results of Table 4.6 are the same for Models IV, V and VI (without

including intercept).

Examining the least squares fits shows that the algebraic signs of
the estimated coefficients for Models I, II, IV, and V agree with the
cconomic theory. The sign of the estimated coefficient ﬁ, for Models
ITI, and VI is positive while it was expected, according to economic
theory, to be negative. Also t-ratios for the coefficient fgz in the Models
I1, 111, V, and VI appear very low, so that the null hypothesis H, : 8,=0,
is accepted for level of significance «=0.05. On the other hand, the
resultant F values are high for all the models, therefore, the test
statistic F for the explanatory variables as a group is significantly
different from its tabulated value.

The regression results that are included in Table 4.4 show us that
the condition number for Model I is high, while for Model IV it is very
low. Also the condition number for Models II, III, V, and VI is very
high. We note that this number for Models V, and VI is smaller than for
the Models II, and III, respectively, but it remains high.

Investigating the results that are reported in Table 4.5 shows that
a high estimated value R? for all the models is obtained. Also the value
of the coefficients of determination R,? among the explanatory vari-
ables are high for Models II, III, V, and VI, and for the case in which
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the explanatory variables logRGDP, and logRGDP_, are considered
as dependents.

Examining the simple correlations r;; between the estimated coef-
ficients shows that r;,=—0.9977 and r;; = —0.9976 for the Models II,
V, and III, V, respectively. This means that there is very strong negative
correlation between the coefficients ﬁ1 and ﬁz. The correlation matrix
for the coefficients is presented in Table 4.6.

All the “symptoms” which are discussed in the previous analysis
for Models II, ITI, V, and VI, namely, high values of R? highly signifi-
cant F combined with highly insignificant t, high condition number,
high correlation between the coefficients ﬁl and B, and also for Models
III and VI the sign of the estimated coefficient §, did not conform to
prior expectation, indicate that a substantial multicollinearity problem
is present.

Ridge Trace Estimates

It was noted previously the one relatively new approach to multi-
collinearity is to use a biased linear estimator in place of least squares.
The purpose of this section is to provide the alternative estimation method
of ridge regression for the imports data. It was shown, in chapter two,
that ridge regression amounts to adding a scalar k>0 to the diagonal
of the cross product or correlation matrices of the regressors before in-
verting them for least squares estimation. That is, we must solve the
equation:

p* = (X'X+kI) X'y

for several values of the ridge coefficient k. In this section, we report
results for k in the interval (0, 0.02).

The numerical results for the Models I, II, III, IV, V, and VI are
shown in the Tables 4.7, 4.8, 4.9, 4.10, 4.11, and 4.12, respectively, for
twenty-one different values of k, including the least squares solution
k=0.

The ridge results that are included in Table 4.7 show that the esti-
mate coefficients Bl and B, of the Model I did not change as k was in-
creased from the value 0.0 to 0.02.

Examining the ridge estimates for Model II that are reported in
Table 4.8 show that the estimate coefficients of logRGDP and log
RGDP_, changed as k was increased. Specifically, the estimated coef-



ficient f§;, was decreased as k was increased and ’@2 was increased, while
the coefficient B, did not change.
Table 4.9 shows that as k was increased the coefficients of log
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RGDP and logRGDP_, changed as in the case of the Model II.

To find the value of k which tends to stabilize the estimated coeffi-
cients of logRGDP and logRGDP_; we follow the ridge trace method
whose maps for all the coefficients and Models I, II, and III, are portayed
in Figures 4.1, 4.2, 4.3, and 4.4. Figures 4.1 and 4.2 illustrate the insta-
bility of the least squares solution. We can see that at value of k in the
interval [0.001, 0.002] reasonable stability of the coefficients is achieved.
If we choose k=0.001 the ridge regression fits for the Models I, I1, and

II1 are respectively:

TABLE 4.7

Ridge Estimates for Model I

k BO T31 Ba R® r
0.000 —7.063 1.392 —0.318 0.9935 1988.270
0.001 —7.037 1.390 —0.322 0.9935 1987.901
0.002 —7.012 1.388 —0.325 0.9935 1986.820
0.003 —6.986 1.387 —0.328 0.9935 1985.039
0.004 —6.961 1.385 —0.332 0.9935 1982.551
0.005 —6.935 1.383 —0.335 0.9935 1979.376
0.006 —6.910 1.381 —0.338 0.9935 1975.528
0.007 -—6.885 1.380 —0.341 0.9934 1971.021
0.008 —6.860 1.378 —0.345 0.9934 1965.867
0.009 —6.835 1.376 —0.348 0.9934 1960.087
0.010 —6.810 1.374 —0.351 0.9934 1953.697
0.011 —6.786 1.373 —0.354 0.9934 1946.714
0.012 —6.761 1.371 —0.357 0.9933 1939.157
0.013 —6.737 1.369 —0.361 0.9933 1931.046
0.014 —6.712 1.368 —0.364 0.9933 1922.402
0.015 —6.688 1.366 —0.367 0.9933 1913.245
0.016 —6.664 1.364 —0.370 0.9932 1903.595
0.017 —6.640 1.362 —0.373 0.9932 1893.475
0.018 —6.616 1.361 —0.371 0.9931 1882.905
0.019 —6.592 1.359 —0.379 0.9931 1871.908
0.020 —6.569 1.357 —0.382 0.9931 1860.505
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TABLE 4.8
Ridge Estimates for Model 11
k % B M % m F
0.000 —06.918 1.069 0.317 —0.338 0.9937 1309.818
0.001 —6.840 0.930 0.452 —0.349 0.9936 1303.162
0.002 —6.798 0.865 0.515 —0.355 0.9936 1295.559
0.003 —6.769 0.828 0.550 —0.358 0.9936 1289.786
0.004 —6.746 0.803 0.574 —0.361 0.9936 1285.367
0.005 —6.727 0.786 0.590 —0.364 0.9935 1281.832
0.006 —6.710 0.773 0.601 —0.366 0.9935 1228.873
0.007 —6.694 0.763 0.610 —0.368 0.9935 1276.292
0.008 —06.679 0.755 0.618 —0.370 0.9935 1273.959
0.009 —6.665 0.748 0.623 —0.372 0.9935 1271.788
0.010 —6.652 0.743 0.628 —0.373 0.9935 1269.719
0.011 —6.639 0.738 0.632 —0.375 0.9935 1267.709
0.012 —6.626 0.734 0.635 —0.376 0.9935 1265.728
0.013 —6.614 0.730 0.638 —0.378 0.9934 1263.752
0.014% —6.602 0.727 0.640 —0.379 0.9934 1261.764
0.015 —6.590 0.724 0.642 —0.381 0.9934 1259.751
0.016 —6.578 0.721 0.644 —0.382 0.9934 1257.704
0.017 —6.567 0.719 0.645 —0.384 0.9934 1255.614
0.018 —6.555 0.717 0.647 —0.385 0.9934 1253.475
0.019 —6.544 0.715 0.648 —0.386 0.9934 1251.284
0.020 —6.532 0.713 0.649 —0.388 0.9934 1249.035
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TABLE 4.9

423

A

k Bo P Ba B [ R F
0.000 —7.776 1.077 0.331 —0.812 0.635 0.9969 1946.560
0.001 —7.694 0.940 0.465 —0.818 0.629 0.9969 1926.587
0.002 —7.647 0.876 0.526 —0.819 0.624 0.9969 1903.748
0.003 —7.614 0.838 0.562 —0.818 0.618 0.9968 1886.196
0.004 —7.586 0.814 0.585 —0.816 0.613 0.9968 1872.433
0.005 —7.563 0.797 0.601 —0.814 0.607 0.9968 1861.043
0.006 —7.541 0.784 0.612 —0.811 0.602 0.9968 1851.115
0.007 —7.520 0.774 0.621 —0.809 0.596 0.9968 1842.076
0.008 —7.501 0.766 0.628 —0.806 0.591 0.9967 1833.558
0.009 —7.482 0.759 0.634 —0.803 0.586 0.9967 1825.320
0.010 —7.464 0.754 0.638 —0.801 0.580 0.9967 1817.201
0.011 —7.447 0.749 0.642 —0.798 0.575 0.9967 1809.088
0.012 —7.429 0.745 0.645 —0.795 0.570 0.9967 1800.905
0.013 —7.412 0.741 0.648 —0.792 0.565 0.9967 1792.598
0.014 —7.396 0.738 0.650 —0.790 0.560 0.9966 1784.132
0.015 —7.379 0.735 0.652 —0.787 0.555 0.9966 1775.481
0.016 —7.363 0.732 0.653 —0.784 0.550 0.9966 1766.630
0.017 —7.347 0.730 0.655 —0.782 0.545 0.9966 1757.569
0.018 —7.331 0.727 0.656 —0.779 0.540 0.9966 1748.293
0.019 —17.315 0.725 0.657 —0.776 0.535 0.9966 1738.802
0.020 —7.299 0.723 0.658 —0.774 0.530 0.9965 1729.097
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TABLE 4.10

Ridge Estimates for Model 1V

k Bt fa ¥ F
0.000 0.969 —0.0529 0.9935 4129.444
0.001 0.968 —0.0534 0.9935 4128.708
0.002 0.967 —0.0540 0.9935 4126.442
0.003 0.965 —0.0546 0.9935 4122.625
0.004 0.964 —0.0551 0.9935 4117.647
0.005 0.963 —0.0557 0.9935 4111.074
0.006 0.962 —0.0562 0.9935 4102.983
0.007 0.960 —0.0567 0.9934 4093.685
0.008 0.959 —0.0573 0.9934 4£082.902
0.009 0.958 —0.0578 0.9934 4071.011
0.010 0.957 —0.0583 0.9934 4057.622
0.011 0.956 —0.0589 0.9934 4043.230
0.012 0.954 —0.0594 0.9933 4027.512
0.013 0.953 —0.0599 0.9933 4010.641
0.014 0.952 —0.0649 0.9933 3992.649
0.015 0.951 —0.0610 0.9933 3973.624
0.016 0.950 —0.0615 0.9932 3953.597
0.017 0.949 —0.0620 0.9932 3932.546
0.018 0.947 —0.0625 0.9931 3910.616
0.019 0.946 —0.0630 0.9931 3887.785

0.020 0.945 —0.0635 0.9931 3864.144
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TABLE 4.11
Ridge Estimates for Model V
k % % B m F
0.000 0.744 0.224 —0.0562 0.9937 2043.358
0.001 0.647 0.319 —0.0580 0.9936 2032.910
0.002 0.602 0.363 —0.0589 0.9936 2021.125
0.003 0.576 0.388 —0.0596 0.9936 2012.034
0.004 .0.559 0.405 —0.0601 0.9936 2005.189
0.005 0.547 0.416 —0.0605 0.9935 1999.712
0.006 0.538 0.424 —0.0608 0.9935 1994.979
0.007 0.531 0.431 —0.0612 0.9935 1990.981
0.008 0.525 0.436 —0.0615 0.9935 1987.369
0.009 0.521 0.440 —0.0618 0.9935 1983.995
0.010 0.517 0.443 —0.0620 0.9935 1980.774
0.011 0.514 0.446 —0.0623 0.9935 1977.676
0.012 0.511 0.448 —0.0626 0.9935 1974.588
0.013 0.508 0.450 —0.0628 0.9934 1971.256
0.014 0.506 0.451 —0.0631 0.9934 1968.326
0.015 0.504 0.453 —0.0633 0.9934 1965.183
0.016 0.502 0.454 ~—0.0635 0.9934 1962.023
0.017 0.500 0.455 —0.0638 0.9934 1958.790
0.018 0.499 0.456 —0.0640 0.9934 1955.458
0.019 0.498 0.452 —0.0642 0.9934 1952.081
0.020 0.496 0.458 —0.0645 0.9934 1948.441
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TABLE 4.12
Ridge Estimates for Model VI
k pr pa o e R F
0.000 0.750 0.233 —0.134 0.1044 0.9969 2703.518
0.001 0.654 0.328 —0.135 0.1031 0.9969 2675.831
0.002 0.609 0.371 —0.136 0.1027 0.9969 2644.111
0.003 0.584 0.396 —0.135 0.1016 0.9968 2620.244
0.004 0.567 0.412 —0.135 0.1007 0.9968 2600.587
0.005 0.555 0.424 —0.135 0.0998 0.9968 2584.780
0.006 0.546 0.432 —0.134 0.0989 0.9968 2521.037
0.007 0.539 0.438 —0.134 0.0980 0.9968 2558.467
0.008 0.533 0.332 —0.134 0.0971 0.9967 2546.604
0.009 0.528 0.447 —0.133 0.0962 0.9967 2535.168
0.010 0.525 0.450 —0.133 0.0954 0.9967 2523.861
0.011 0.521 0.453 —0.132 0.0945 0.9967 2512.654
0.012 0.518 0.455 —0.132 0.0937 0.9967 2501.250
0.013 0.516 0.457 —0.131 0.0928 0.9967 2487.709
0.014 0.513 0.458 —0.131 0.0920 0.9966 2477.9828
0.015 0.511 0.460 —0.130 0.0912 0.9966 2465.934
0.016 0.510 0.461 —0.130 0.0903 0.9966 2453.653
0.017 0.508 0.462 —0.129 0.0895 0.9966 2441.070
0.018 0.506 0.463 —0.129 0.0887 0.9966 2428.209
0.019 0.505 0.463 —0.129 0.0879 0.9966 2414.981
0.020 0.504 0.464 —0.128 0.0871 0.9965 2401.523
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logRIM = —7.037 + 1.39 logRGDP — 0.318 logRP
(—12.053) (53.4) (—2.95)

logRIM = —68& + 0.93 logRGDP 4 0.452 logRGDP_,
(—11.46) (3.74) (1.9)

— 0.349 logRP

(—3.14)

logRIM = —7.694 + 0.94 logRGDP + 0.465 logRGDP_,
(—16.75) (5.31) (2.68)

— 0.818 logRP + 0.629 logRP_,
(—6.66) (4.99)

Note: The number in parenthesis below each coefficient is a t-ratio.

Minimazity and Bayesian Estimators

To find the value of k which tends to stablize the estimated coeffi-
cients, the ridge trace method was used in the previous section, and k=
0.001 was chosen. The purpose of this current section is to employ two
alternative procedures for choosing k and to calculate also the Bayesian
estimators for import data.

One popular ridge estimator chooses k=352%/§%,., Although
this may be performed iteratively, the initial calculation of k from this
formula is given in Table 4.13. Examining the numerical results that are
included in this table, shows that the k’s are close to interval (0.01,
0.025).

Another popular ridge estimator chooses k=P&2/§'@. The
calculation of k from this formula, that is reported in Table 4.14, shows
that k’s are close to interval (0.0002, 0.054).

Thisted has computed the condition for minimaxity of P52/§’'®
as:

>2+§ , P >3

Investigating the results of Thisted’s condition for minimaxity for
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the import data which are given in Table 4.15, shows that for all the
models, Thisted’s condition does not hold. Thus, the ridge estimator is
not minimax for our data.

All the above results suggest a value of k close to the value .001
selected on the basis of the ridge trace. Thus, if ridge regression is used
to estimate a Greek import function, it is clear that the value of k should
be small.

In order to obtain Bayesian estimates of the demand elasticities
for imports with respect to income and price for the Greek economy,
we follow the theoretical background of chapter four. First, we must
specify the prior density function for the regression parameters. We
believe that the demand elasticity for imports with respect to income
can be described by a normal distribution with mean equal to 1.5 (ela-

TABLE 4.13

Calculation k = 6%/§%..; Import Data

Model 5t B %max k

I 0.0043 3.92 0.0010

11 0.0044 28.18 0.0001
111 0.0022 1.96 0.0010
v 0.0067 0.56 0.0110
A% 0.0068 0.25 0.0270
VI 0.0035 1.96 0.0010

TABLE 4.14

Calculation k = P6%/§'@; Import Data

Model 5t P 66 k
I 0.0043 3 45.13 0.00020
1I 0.0044 4 52.10 0.00033
ITI 0.0022 5 62.65 0.00018
Iv 0.0067 2 1.05 0.01300
v 0.0068 3 0.38 0.05368
VI 0.0035 4 4.54 0.00300
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TABLE 4.15

Thisted’s Condition for Minimazxity;
Import Data

Model I, Zxe, YIS
I 5917.2058 5917.1596 1.00
11 13850.4470 11080.3300 1.25
II1 16152.0690 12913.2220 1.25
v 0.0044 0.0038 1.45
\'s 434.0309 434.0277 1.00
VI 4062.4800 3906.2500 1.04

Note: %p is the smallest eigenvalue.

stic). We believe also that the smallest value the income elasticity is
likely to have is 1.0 and the largest is 2.0. This implies that the standard
deviation S will be equal to 0.25 for the confidence coefficient « = 0.05.
Therefore, it can be written for Model I that £, ~ N(1.5, 0.25). We
believe also that the price elasticity has a normal distribution with mean
—0.5 (inelastic) and standard deviation 0.25 because we consider that
the confidence limits are —1.0 and 0. Thus, B, ~ N(—0.5, 0.25). These
prior beliefs were obtained on the basis of the survey of the literature in
Houthakker and Magee (1969). The third parameter of Model I is the
intercept. For simplicity, we make our prior mean for the intercept ap-
proximately equal to ordinary least squares estimate. This effectively
ensures that the Baysian estimate is equal to the ordinary least squares
estimate. We again assume that the prior distribution is normal with a
standard deviation equal to 0.25.

For Models II and III, the income elasticity is divided between
immediate and one prior delayed values. We continue to assume that
the long run elasticity is 1.5, and we assume that most of this elasticity
occurs within the current period. Thus, we set means for 8, at 1.0 and
for B, at 0.5 with standard deviations equal to 0.25.

In Model III, the price elasticity is also divided between immediate
and one period delayed values. Although we continue to assume the same
prior mean for the long run elasticity, we assume that the one period
delayed elasticity is larger than the immediate elasticity. Thus we specify
the prior mean for 8, at —0.2, and the prior mean for g, at —0.3.
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The results of the Bayesian estimators are given in Tables 4.61
through 4.19. Examining the reported tables shows that the prior vari-
ance is large relative to the ordinary least squares variance. That is,
S?/5% - oo which means that the Bayesian estimator is approximately
equal to ordinary Jeast squares estimator. Therelore, Bayesian estima-
tion does not deal with the multicollinearity problem in this data set.

TABLE 4.16

Ordinary Least Squares, and Bayes Estimates,
for Model I (Including Prior Information)

Coefficient Prior OLS Bayes
Bo —7.0 —7.061 —7.011
By 1.5 1.390 1.660
Bs —0.5 —0.320 —0.590
s = 0.0043, 82 = 0.0625
TABLE 4.17

Ordinary Least Squares, and Bayes Estimates
for Model II (Including Prior Information)

Coefficient Prior OLS Bayes
Bo —7.0 —6.920 —6.9700
By 1.0 1.071 1.0041
Bs 0.5 0.380 0.4700
Bs —0.5 —0.390 —0.3900

o = 0.0043, 8% = 0.0625
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TABLE 4.18

Ordinary Squares, and Bayes Estimates, for
Model III (Including Prior Information)

Coefficient Prior OLS Bayes
Bo —7.0 —7.800 —7.045
8, 1.0 1.081 1.380
B 0.5 0.330 0.720
B, —o0.2 —0.810 —0.510
Be —0.3 0.630 0.210

s? = 0.0022, S5? = 0.0625

TABLE 4.19

Price and Income Elasticities from Ordinary
Least Squares and Bayes Estimales
(Including Prior Information)

Model I I I
SR LR SR LR SR LR

Prior: Income

Elasticity  1.50 1.50 1.00 1.50 1.00 1.50

Price

Elaslicity —0.50 —0.50 —0.50 —0.50 —0.20 —0.50
OLS: Incomo

LElasticity 1.39 1.39 1.07 1.45 1.08 1.41

Price

LElaslicity —0.32 —0.32 —0.39 —0.39 —0.81 —0.18

Bayes: Income

Elasticity 1.66 1.66 1.0041 1.47 1.38 2.10
Price
Elasticity —0.59 —0.59 —0.3900 —0.39 —0.51 —0.30

Note: The symbols SR and LR mean short run and long run, respectively.
a8






CHAPTER V

SUMMARY, CONCLUSIONS, AND
SUGGESTIONS

The main purpose of this study was to demonstrate the theory and
logic of the biased method of statistical estimation, which was introduced
by the chemical engineer Hoerl and it is called ridge regression.

The first chapter reviewed the assumptions under which the method
of least squares has some very attractive statistical properties. It was
shown that one crucial assumption is that the number P of columns in
X matrix is less than the number T of observations. In other words,
there is no exact linear relationship among the X variables. In addition,
it was discussed that when this assumption is only just satisfied, a com-
mon situation in practice, a multicollinearity problem exists.

Chapter two developed the theoretical side of ridge regression. The
effect of multicollinarity on ordinary least squares estimation was ex-
plored in the first section. It was shown that, according to the Gauss-
Markov theorem, the least squares estimator is linear, unbiased and has
minimum variance in the class of unbiased linear estimators. But there
is no guarantee that the variance of the least squares estimator will be
small. In the particular case of multicollinearity, the variances of the
estimated coefficients tend to be large. It was also shown that multi-
collinearity tends to produce least squares estimators that are too large
in absolute value.

The ridge estimator was defined to be that estimator which mini-
mizes the sum of the squared distances of the points from the estimated
line subject to a constraint on the length of the estimating vector. It was
shown that as the ridge parameter k increases, the ridge estimators get
smaller and smaller in absolute size and the ridge regression produces an
estimator with a smaller variance than ordinary least squares. Because
the ridge estimator is biased its technique was compared to ordinary
least squares in terms of mean square errors. It was demonstrated that
il the ridge parameter is chosen between zero and ¢%/@2,,, the ridge
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mean square error will be less than the mean square error of the ordinary
least squares estimator. The result arises because as k increases the
reduction in variance exceeds the increase in bias.

Chapter two concluded with a discussion of two methods of choosing
theridge parameter. It was noted that these procedures make k a function
of the sample data, and, therefore, k becomes stochastic.

Chapter three surveyed the critical analysis of ridge regression that
have been developed by statisticians outside the classical least squares
framework. The decision theory of biased estimators was reviewed and
it was shown that for choosing k without reference to the data the ridge
regression does not yield a minimax estimator. In addition, the relation-
ship between Bayesian statistical inference and ridge regression were
discussed. It was proven that for choosing the prior mean equal to zero,
and a common variance for all regression coefficients, there is a particular
value of k for which the ridge estimator is a Bayes estimator. This close
relationship between the ridge estimator and the Bayesian estimator
shows that the ridge estimator is an attempt to incorporate prior in-
formation into the estimation process.

Chapter four presented the ridge regression method in practice. Its
technique was compared to ordinary least squares in the context of
estimating price and income elasticities for Greek imports. A number of
specifications were examined. These specifications differed by the amount
of multicollinearity.

The ordinary least squares estimates show that for Models I and IV
the system is not seriously different from orthogonality, while for the
rest of the models a substantial multicollinearity problem is present.
The employment of the ridge trace method confirmed these results. The
cocfficients of logRGDP and logRGDP_, in Models II and III changed
as k was increased. This method gave for the import data a small value
of k. In the interval (0.001, 0.002). Two alternative methods of computat-
ing k also gave similar results. However, the ridge regression did not
yicld a minimax estimator, while the Bayesian approach gave an esti-
mator approximately equal to ordinary lcast squares.

In conclusion, it appears that the conventional model of Greek im-
ports is subject to a substantial multicollinearity problem if lags are
included in the model. Although ridge estimation provided more stable
estimators for small values of the ridge paramcter, the estimator was
not minimax. In the case of a lagged price specification, a wrong sign
was encountered in both the ordinary least squares and ridge estima-
tions.
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