ΓΙΑΝΝΗ ΠΑΛΑΙΟΛΟΓΟΥ*

ΟΙΚΟΝΟΜΕΤΡΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΝΟΜΙΣΜΑΤΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΗΣ ΣΥΝΑΛΛΑΓΜΑΤΙΚΗΣ ΙΣΟΤΙΜΙΑΣ YEN/ $**

*Ο συγγραφέας εκφράζει τις θερμές του ευχαριστίες στον ανώνυμο κριτή, που με τις χρήσιμες υποδείξεις και παρατηρήσεις του συνέβαλε στη βελτίωση του αρχικού κειμένου. Επίσης ευχαριστίες οφείλονται στους Δρ. Σ. Γεωργαντέλη και Δρ. Λ. Ζάραγκα για τις χρήσιμες ιδέες και προτάσεις τους.

**Τα βασικά συμπεράσματα της εργασίας αυτής παρουσιάσθηκαν στο International Symposium on Economic Modelling (Πανεπιστήμιο Πειραιώς, 2-4 Ιουνίου 1993).
Περίληψη
1. Εισαγωγή
2. Παρουσίαση του νομισματικού υποδείγματος
3. Έλεγχος της στασιμότητας των χρονολογικών σειρών —
 Έλεγχος της συνολικής κήρυξης του υποδείγματος
4. Έλεγχος της υπόθεσης της ισοδυναμίας των αγοραστικών
 δυνάμεων μακροχρόνια
 4.1. Εισαγωγή
 4.2. Υπόδειγμα συνολικής κήρυξης της PPP
5. Συμπεράσματα
Bibliographia
ΠΕΡΙΛΗΨΗ

1. ΕΙΣΑΓΩΓΗ

Η περιόδος μετά το 1970 χαρακτηρίζεται από συνεχείς διακυμάνσεις των συναλλαγματικών ισοτιμιών των διαφόρων νομισμάτων και από αστάθεια στο διεθνές εμπόριο και τις διεθνείς οικονομικές συναλλαγές.

Εξετάζοντας την εξωτερική αξία ενός νομίσματος (τιμή συναλλάγματος) αποθέτουμε σε δύο στόχους: ο πρώτος στόχος είναι η ανάλυση και ο προσδιορισμός των παραγόντων εκείνων που προσδιορίζουν τη συμπεριφορά της συναλλαγματικής ισοτιμίας του νομίσματος και ο δεύτερος στόχος είναι η μελέτη και ανάλυση των επιδράσεων των μεταβολών των συναλλαγματικών ισοτιμιών στα πραγματικά μακροοικονομικά μεγέθη (π.χ. προϊόν, ισοζύγιο πληρωμών κλπ.).

Για την ερμηνεία των μεταβολών των συναλλαγματικών ισοτιμιών των διαφόρων νομισμάτων αναπτύχθηκαν διάφορες θεωρίες, που η κάθε μία ερμηνεύει με το δικό της τρόπο τις μεταβολές των ισοτιμιών των νομισμάτων.

Κατά τα μέσα της δεκαετίας του 1970 άρχισαν να κατασκευάζονται τα λεγόμενα νομισματικά υποδείγματα (monetary models) προσδιορισμού των συναλλαγματικών ισοτιμιών, τα οποία, θα πρέπει να πουμέ, αρχικά συνέβαλαν με μεγάλη επιτυχία στην ερμηνεία της συμπεριφοράς της συναλλαγματικής ισοτιμίας των νομισμάτων και έγιναν αντικείμενο χρησιμοποίησης σε εμπειρικό πεδίο από πολλούς ερευνητές.

Σύμφωνα με τα νομισματικά υποδείγματα προσδιορισμού της συναλλαγματικής ισοτιμίας, η συναλλαγματική τιμή καθορίζεται από τις συνθήκες ισορροπίας στην εγχώρια αγορά χρήματος και την αγορά χρήματος εξωτερικού και επομένως η συναλλαγματική ισοτιμία ενός νομίσματος κρίνεται ως ένα νομισματικό φαινόμενο.

Σκοπός της εργασίας αυτής είναι η εμπειρική διερεύνηση του νομισματικού υποδείγματος χρησιμοποιώντας σύγχρονες οικονομικές τεχνικές, και συγκεκριμένα το test των Dickey και Fuller (DF), το επανεκθημένο test των Dic-
2. ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΝΟΜΙΣΜΑΤΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ

Προτού να προχωρήσουμε στην εξειδίκευση του υποδείγματος, αναφέρουμε τις βασικές υποθέσεις του νομισματικού υποδείγματος.
α) Υπάρχει πληρής ευκαμψία των τιμών όλων των αγαθών.
β) Υπάρχει πληρής υποκαταστασιμότητα εγχώριων και εξωτικών μη χρηματικών περιουσιακών στοιχείων.
γ) Υπάρχει πληρής κινητικότητα των κεφαλαίων.

Το νομισματικό υπόδειγμα με ευκαμψία των τιμών (Johnson, 1972, Frenkel, 1976, Bilson, 1978a,b) στηρίζεται στις εξής εξισώσεις:

\[m_t - p_t = by_t - c_i_t \] (1)
\[m_t^* - p_t^* = b^*y_t^* - c^*_i_t \] (2)
\[s_t = p_t - p_t^* \] (3)

όπου \(m \) είναι η προσφορά χρήματος, \(p \) είναι το επίπεδο ονομαστικών επιτοκίων, \(y \) είναι το επίπεδο βιομηχανικής παραγωγής, \(p_t \) είναι το επίπεδο τιμών (δείκτης τιμών καταναλωτή) και \(s \) είναι η συναλλαγματική ισοτιμία Yen/$.

Όλες οι μεταβλητές είναι εκφρασμένες σε λογαριθμούς, εκτός από το επίπεδο. Οι μεταβλητές με αστερίσκο (*) αναφέρονται στην Αμερική, ενώ οι μεταβλητές χωρίς αστερίσκο στην Ιαπωνία. Τα στοιχεία είναι τριμηνιαία και καλύπτουν το χρονικό περίοδο 1977:1-1992:4. Οι δύο πρώτες συναρτήσεις είναι συναρτήσεις ζήτησης χρήματος για την Ιαπωνία και Αμερική. Η τρίτη εξίσωση αντανακλά την υπόθεση ισορροπίας στη διεθνή αγορά αγαθών. Η ισορροπία αυτή δίνεται από τη συνθήκη της απόλυτης ισοδυναμίας των αγοραστικών δυνάμεων (absolute purchasing power parity condition, PPP).

Προς αποφυγή του προβλήματος πολυσυγγραμμικότητας, δεχόμαστε την απλοποιημένη υπόθεση των ίσων παραμέτρων, υπόθεση που γίνεται δεκτή σε

Από το συνδυασμό των εξισώσεων (1), (2) και (3) και με βάση τις υποθέσεις των ίσων παραμέτρων των μεταβλητών και της εξωγένειας της προσφοράς χρήματος προκύπτει η κατωτέρω ανηγμένης μορφής εξίσωση συναλλαγματικής ισοτιμίας, που αποτελεί παράλλαγη του νομισματικού υποδείγματος με ευκαμψία των τιμών (flexible – price version of the monetary model):

\[s_t = (m_t - m_t^*) - b (y_t - y_t^*) + c (i_t - i_t^*) \]

(3).

Από την εξίσωση αυτή προκύπτει ότι υπάρχει σχέση αναλογικότητας μεταξύ

ονομαστικής συναλλαγματικής ισοτιμίας και της μεταβλητής της σχετικής προσφοράς χρήματος \(m_t - m_t^* \). Η σχέση αυτή αναλογικότητας αποτελεί περιορισμό (restriction) που προκύπτει από το νομισματικό υπόδειγμα. Η εξίσωση (3) αποτελεί περιορισμένη (restricted) μορφή του νομισματικού υποδείγματος. Η χωρίς περιορισμούς (unrestricted) στοχαστική μορφή του νομισματικού υποδείγματος είναι η εξίσωση (3) ':

\[s_t = b_0 m_t + b_1 m_t^* + b_2 y_t + b_3 y_t^* + b_4 i_t + b_5 i_t^* + \varepsilon_t \ (\varepsilon = \text{stoχαστικός όρος}) \]

(3)'.

όπου \(b_0, b_3, b_4 > 0 \) και \(b_1, b_2, b_5 < 0 \).

Ο λόγος που παρουσιάζουμε τη χωρίς περιορισμούς εξίσωση του νομισματικού υποδείγματος (3) ' είναι ότι η υπόθεση των ίσων συντελεστών των μεταβλητών που αναφέραμε πιο πάνω είναι μία από τις αιτίες που οδηγούν σε αποτυχία το νομισματικό υπόδειγμα (Lane, 1991).

Αναφέρθηκε πιο πάνω ότι η βασική υπόθεση των νομισματικών υποδειγμάτων είναι η πλήρης κινητικότητα των κεφαλαίων και η πλήρης υποκαταστασιμότητα των χρηματικών περιουσιακών στοιχείων εσωτερικού και εξωτερικού, έτσι ώστε να ισχύει η συνθήκη της ακάλυπτης ισοδυναμίας του επιτοκίου (uncovered interest parity condition).

\[s_{t+1}^e - s_t = \Delta s_{t+1} = i_t - i_t^* \]

(4)

όπου \(s_{t+1}^e \) είναι η αναμενόμενη (προβλεπόμενη) συναλλαγματική ισοτιμία Yen/$ kατά την περίοδο \(t+1 \), με βάση το σο \(t (s_{t+1}^e = E{s_{t+1}|i_t}) \), και \(s_{t+1}^e - s_t \) είναι ο αναμενόμενος ρυθμός υποτίμησης.

Η εξίσωση (4) μαζί με την εξίσωση (5):

\[s_{t+1}^e - s_t = -\theta (s_t - \bar{s}_t) + \pi_t - \pi_t^* \]

(5)
(όπου, \(\pi, \pi^* \) είναι ο αναιμενόμενος ρυθμός πληθωρισμού στην Ιαπωνία και Αμερική, και \(i \) είναι η συναλλαγματική τιμή ισορροπίας), αποτελούν δύο βασικές υποθέσεις του νομισματικού υποδείγματος με δυσκαμψία των τιμών (Dornbusch, 1976, Frankel, 1979) (sticky-price version of the monetary model).

Από το συνδυασμό των εξισώσεων (1), (2), (3) με τις εξισώσεις (4) και (5) προκύπτει η ανθημένης μορφής εξίσωση του νομισματικού υποδείγματος με δυσκαμψία των τιμών (Frankel, 1979):

\[
s_t = (m_t - m^*_t) - b(y_t - y^*_t) - \frac{1}{\theta}(i_t - i^*_t) + \left(\frac{1}{\theta} + c\right)(\pi_t - \pi^*_t)
\]

(6)

Το υπόδειγμα αυτό της δυσκαμψίας των τιμών δεν επιτρέπει τη γρήγορη προσαρμογή της εγχώριας τιμής, ώστε βραχυχρόνια να μην ισχύει η υπόθεση της ισοδυναμίας των αγοραστικών δυνάμεων (PPP), αλλά να αποτελεί η PPP μακροχρόνιο μόνο φαινόμενο.

Το με περιορισμούς στους συντελεστές υπόδειγμα (6) γράφεται χωρίς περιορισμούς με στοχαστική μορφή ως:

\[
s_t = \gamma_1 m_t + \gamma_2 m^*_t + \gamma_3 y_t + \gamma_4 y^*_t + \gamma_5 i_t + \gamma_6 i^*_t + \gamma_7 \pi_t + \gamma_8 \pi^*_t + \epsilon_t
\]

(7)

και είναι γνωστό ως υπόδειγμα ισοδυναμίας των πραγματικών επιτοκίων του Frankel, όπου \(\gamma_1 = 1, \gamma_4 > 0, \gamma_6 > 0, \gamma_7 > 0 \) και \(\gamma_2 = -1, \gamma_3 < 0, \gamma_5 < 0, \gamma_8 < 0 \).

Ως προσεγγιστική μεταβλητή (proxy variable) του αναιμενόμενου πληθωρισμού χρησιμοποιήθηκε το μακροπρόθεσμο επιτόκιο απόδοσης δεκαετιών ομολόγων (R). Όπως όμως διατυπώνεται το υπόδειγμα του Frankel (εξίσωση 7), υπάρχουν βραχυχρόνιες επιδράσεις μέσω των βραχυχρόνιων επιτοκίων (i και i'), πράγμα που εμποδίζει τη χρησιμοποίηση του υποδείγματος αυτού στην ανάλυση συνολικής μεταβλητής της μακροχρόνιας σχέσης ισορροπίας. Επίσης, ο στατιστικός έλεγχος έδειξε ότι υπάρχει έντονη συσχέτιση μεταξύ βραχυχρόνιων και μακροχρόνιων επιτοκίων Ιαπωνίας και Αμερικής (συντελεστές υποδείγματος 0,88 και 0,83 αντίστοιχα).

Έτσι επιλέγουμε τελικά στην περαιτέρω ανάλυση το υπόδειγμα

\[
s_t = \delta_1 m_t + \delta_2 m^*_t + \delta_3 y_t + \delta_4 y^*_t + \delta_5 R_t + \delta_6 R^*_t + \epsilon_t
\]

(7)',

που περιλαμβάνει μόνο το μακροχρόνιο επιτόκιο Ιαπωνίας (R) και Αμερικής (R') (βλ. και MacDonald και Taylor, 1994). Το βραχυχρόνιο επιτόκιο θα χρησιμοποιηθεί στην κατασκευή του δυναμικού υποδείγματος διόρθωσης σφάλματος, που θα γίνει σε επόμενη εργασία μας.

Στο επόμενο τμήμα θα ασχοληθούμε με τον έλεγχο της στασιμότητας (ή μονοδιάλειας ρίζας) των χρονολογικών σειρών, όπως επίσης και εάν το υπόδειγμα (7)' αποτελεί μία μακροχρόνια σχέση ισορροπίας, δηλαδή αν υπάρχουν συνολικής διανύσματα μεταξύ των μεταβλητών s, m, m*, y, y*, R, R'.
3. ΕΛΕΓΧΟΣ ΤΗΣ ΣΤΑΣΙΜΟΤΗΤΑΣ ΤΩΝ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ - ΕΛΕΓΧΟΣ ΤΗΣ ΣΥΝΟΛΟΚΛΗΡΩΣΗΣ ΤΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ

Κατά τους Granger (1983) και Engle και Granger (1987), αν μια μη στάσιμη χρονολογική σειρά X_t γίνεται στάσιμη παίρνοντας τις δ πρώτες διαφορές, τότε η σειρά αυτή θεωρείται ολοκληρωμένη (integrated) βαθμού d, και συμβολίζεται με $X_t \sim I(d)$, οπότε η σειρά αυτή περιλαμβάνει d μοναδαίες ρίζες (unit roots). Θεωρείται μία σειρά στάσιμη, όταν ο μέσος της είναι σταθερός και η διακύμανση είναι επίσης διαχρονικά σταθερή (η σειρά αυτή έχει στοχαστική τάση).

Δύο σειρές που έχουν τον ίδιο βαθμό ολοκλήρωσης, έστω d, θεωρούνται συνολοκληρωμένες (cointegrated) βαθμού d, b και συμβολίζονται ως $CI(d,b)$, όταν ο γραμμικός συνδυασμός των σειρών αυτών έχει βαθμό ολοκλήρωσης $I(d-b), b > 0$ (Engle και Granger, 1987). Εάν δύο σειρές είναι συνολοκληρωμένες $CI(1,1)$, αυτό σημαίνει ότι ο στοχαστικός όρος (όρος σφάλματος), e_t, ακολουθεί μία στάση διαδικασία, είναι δηλαδή μία στάση σειρά, $I(0)$, $(e_t \sim I(0, \sigma^2))$. Το πρώτο στάδιο της μεθόδου της συνολοκλήρωσης (cointegration), με την οποία διαπιστώνεται η μακροχρόνια σχέση ισορροπίας μεταξύ δύο ή περισσότερων μεταβλητών, είναι ο έλεγχος της στασιμότητας των χρονολογικών σειρών. Για τον έλεγχο αυτό στην παρούσα εργασία θα χρησιμοποιήσουμε το τεστ των Dickey και Fuller (DF) (Fuller, 1976, Dickey και Fuller, 1979, 1981) και το επαυξημένο τεστ των Dickey-Fuller (augmented test of Dickey-Fuller, ADF), όπως επίσης και το τεστ των Phillips-Perron (PP), (Perron, 1988, Phillips, 1986, Phillips και Perron, 1988). Το τεστ των Dickey-Fuller για τον έλεγχο της αυτοσυχέτισης στηρίζεται σε παραμετρική μέθοδο, γεγονός που μειώνει τη δύναμή του, ενώ αντίθετα το τεστ των Phillips-Perron στηρίζεται σε μια παραμετρική διόρθωση της αυτοσυχέτισης. Από την άλλη όμως πλευρά, κατά τον Schwert (1987), η μόνη χρήσιμη στατιστική για τον έλεγχο της στασιμότητας των χρονολογικών σειρών είναι η στατιστική DF και ADF. Ο Schwert υποστηρίζει ότι η στατιστική των Phillips-Perron αποτρέπει τη μηδενική υπόθεση της μοναδιαίας ρίζας πολύ συχνά, όταν η σειρά ακολουθεί μία διαδικασία κινητού μέσου πρώτου βαθμού. Επειδή δεν υπάρχει σαφής θέση της υποθέσεως ή μη της μεθόδου Dickey-Fuller έναντι της μεθόδου Phillips-Perron, παρουσιάζουμε τα αποτελέσματα των δύο μεθόδων.

Ο έλεγχος μοναδιαίας ρίζας με βάση τη στατιστική DF και ADF εφαρμόζεται στις εξισώσεις (8) και (9), οι οποίες εκτιμούνται με τη γνωστή μέθοδο OLS. Οι εξισώσεις αυτές αναφέρονται στα επίπεδα των μεταβλητών και στις πρώτες διαφορές τους αντίστοιχα.

1 Επίσης, οι στατιστικές DF και ADF έχουν καλύτερες ιδιότητες για μικρά σχετικά δελτία (Campbell και Perron, 1992).
\begin{align*}
y_t &= \beta_0 + \beta_1 y_{t-1} + \sum_{j=1}^p \gamma_j \Delta y_{t-j} + u_t \quad \text{(8)}, \quad u_t \sim (0, \sigma^2) \\
\Delta y_t &= \beta_0 + \beta_1 \Delta y_{t-1} + \sum_{j=1}^p \gamma_j \Delta^2 y_{t-j} + u_t \quad \text{(9)}, \quad u_t \sim (0, \sigma^2)
\end{align*}

όπου το σύμβολο \(\Delta \) δηλώνει τις πρώτες διαφορές της μεταβλητής και \(\gamma_1 \) είναι ο στοχαστικός όρος των εξισώσεων.

Εάν γίνεται δεκτή η μηδενική υπόθεση \(H_0 : \beta_1 = 1 \) και απορρίπτεται η εναλλακτική υπόθεση \(H_1 : \beta_1 \neq 1 \), τότε η χρονολογική σειρά θεωρείται μη στάσιμη (non-stationary) (ύπαρξη μοναδιαίας ρίζας). Τα αποτελέσματα των ελέγχων στασιμότητας των μεταβλητών του υποδείγματος \((7)' \), χρησιμοποιώντας τις στατιστικές DF, ADF και PP, παρουσιάζονται στον κατώτερο πίνακα \(^2\).

Από τον πίνακα 1 προκύπτει ότι όλες οι μεταβλητές του υποδείγματος είναι ολοκληρωμένες πρώτου βαθμού \((1, 1)\), δηλαδή στις πρώτες διαφορές τους είναι στάσιμες.

Επομένως μπορούμε να προχωρήσουμε στο επόμενο στάδιο, που είναι ο έλεγχος της συνολικής στατιστικής των μεταβλητών, δηλαδή ο έλεγχος της ύπαρξης μακροχρόνιας σχέσης ισορροπίας μεταξύ της μεταβλητής \(s \) και των άλλων μεταβλητών, \(m, m^*, y, y^*, R, R^* \), με τη μέθοδο του Johansen της μέγιστης πιθανότητας. Προηγουμένως όμως θα πρέπει να ελεγχθεί η ορθή ή όχι έξειδικευση των αυτοπαλίνδρομων διανυσμάτων (autogressive vectors, VAR), δηλαδή να εισρθεί ο αριθμός αριθμός υστερήσεων του συστήματος VAR.

Συνοπτικά παρουσιάζουμε τη μεθοδολογία του Johansen\(^3\).

Ο Johansen καθορίζει ένα διάνυσμα \(\Omega \) διαστάσεων των μεταβλητών \(X \) που είναι ολοκληρωμένες πρώτου βαθμού \((1, 1)\). Το διάνυσμα αυτό περιλαμβάνει όλες τις μεταβλητές του υποδείγματος \((7)' \). Το σύστημα των αυτοπαλίνδρομων διανυσμάτων γενικά γράφεται:

\[
X_t = \Pi_1 X_{t-1} + \Pi_2 X_{t-2} + \ldots + \Pi_k X_{t-k} + \mu + \epsilon_t \quad \text{(10)}
\]

όπου \(\Pi_i \) είναι οι μήτρες των συντελεστών, \(\mu \) είναι ο σταθερός όρος στο σύστημα και \(\epsilon_t \) είναι ένα διάνυσμα \(n \)-διαστάσεων με μηδενικό μέσο και μήτρα συνδιακύμανσης \(\Omega \). Η μήτρα των μακροχρόνιων συντελεστών \(\Pi \) (στοχαστική μήτρα συνολικής στατιστικής) που αντιστοιχεί στη (10) καθορίζεται από την (11), η οποία είναι \(m \times n \) μήτρα:

\[
\Pi = \mathbf{I} - \Pi_1 - \Pi_2 - \ldots - \Pi_k \quad \text{(11)}
\]

\(^2\) Η στατιστική DF προκύπτει όταν είναι \(p = 0 \) στις εξισώσεις (8) και (9).

(όπου \(l = \) μοναδιαία μήτρα).

ΠΙΝΑΚΑΣ 1

Έλεγχος στασιμότητας για την περίοδο 1977:Q1 – 1992:Q4

<table>
<thead>
<tr>
<th></th>
<th>(DF (t_m))</th>
<th>(ADF (t_m))</th>
<th>(LM(4))</th>
<th>(Z (t_m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>-0.7841(0)</td>
<td>-</td>
<td>0.348</td>
<td>-0.9606</td>
</tr>
<tr>
<td>(m)</td>
<td>-</td>
<td>-0.6164(4)</td>
<td>0.091</td>
<td>-0.4886</td>
</tr>
<tr>
<td>(m^*)</td>
<td>-</td>
<td>-0.8104(4)</td>
<td>0.076</td>
<td>-0.6530</td>
</tr>
<tr>
<td>(y)</td>
<td>-</td>
<td>-1.6105(4)</td>
<td>0.020*</td>
<td>-1.1679</td>
</tr>
<tr>
<td>(y^*)</td>
<td>-</td>
<td>-1.6576(2)</td>
<td>0.167</td>
<td>-1.2347</td>
</tr>
<tr>
<td>(R)</td>
<td>-</td>
<td>-1.8764(3)</td>
<td>0.254</td>
<td>-1.7415</td>
</tr>
<tr>
<td>(R^*)</td>
<td>-1.0654(0)</td>
<td>-</td>
<td>0.149</td>
<td>-1.5007</td>
</tr>
<tr>
<td>(\Delta s)</td>
<td>-6.2289(0)</td>
<td>-</td>
<td>0.845</td>
<td>-6.3241</td>
</tr>
<tr>
<td>(\Delta m)</td>
<td>-3.7949(3)</td>
<td>-</td>
<td>0.075</td>
<td>-16.2009</td>
</tr>
<tr>
<td>(\Delta m^*)</td>
<td>-3.3830(3)</td>
<td>-</td>
<td>0.066</td>
<td>-14.4826</td>
</tr>
<tr>
<td>(\Delta y)</td>
<td>-2.8971(6)</td>
<td>-</td>
<td>0.146</td>
<td>-8.1471</td>
</tr>
<tr>
<td>(\Delta y^*)</td>
<td>-9.1976(1)</td>
<td>-</td>
<td>0.120</td>
<td>-10.1459</td>
</tr>
<tr>
<td>(\Delta R)</td>
<td>-5.0912(1)</td>
<td>-</td>
<td>0.054</td>
<td>-7.1309</td>
</tr>
<tr>
<td>(\Delta R^*)</td>
<td>-5.9486(0)</td>
<td>-</td>
<td>0.940</td>
<td>-6.1099</td>
</tr>
</tbody>
</table>

Η στατιστική \((t_m) \) (στατιστική \(DF \) και στατιστική \(ADF \) είναι η τιμή του \(t \) του Student που αναφέρεται στο συντελεστή \(t \) των εξισώσεων (8) και (9), και η στατιστική \(Z (t_m) \) είναι η στατιστική των Phillips-Perron. Οι αριθμοί στις παρενθέσεις δηλώνουν τον αριθμό των υστερήσεων των εξαρτημένων μεταβλητών. Η επιλογή του αριθμού των υστερήσεων στις παλινδρομήσεις έγινε με βάση το τεστ του πολλαπλαιαστή του Lagrange (Lagrange Multiplier, LM) για έλεγχο αυτοσυσχέτισης 4ου βαθμού των όρων σφάλματος. Η στατιστική ΛΜ ασυμπτωματικά οκολούθει την κατανομή \(\chi^2 \) (4) (βαθμοί ελευθερίας=4).

* Σημαντικό σε επίπεδο 1% και όχι σε 5%. Η στατιστική \(Z (t_m) \) υπολογίσθηκε με 4 χρονικές υστερήσεις. Οι κριτικές τιμές και για τις δύο στατιστικές (DF/ADF και PP) έχουν παρθεί από τους πίνακες του Fuller (1976, σελ. 373). Η κριτική τιμή σε επίπεδο 0.05 για \(n = 100 \) είναι -2.89. Οι αριθμοί στη στήλη ΛΜ αναφέρονται στα οριακά επίπεδα σημαντικότητας.

Το σύστημα (10) μπορεί να παραμετροποιηθεί εκ νέου, ώστε να προκύψει το γενικευμένο υπόδειγμα διόρθωσης σφάλματος (error correction model).

\[
\Delta X_t = \Gamma_1 \Delta X_{t-1} + \Gamma_2 \Delta X_{t-2} + ... + \Gamma_{k-1} \Delta X_{t-k+1} + \Gamma_k X_{t-k} + \mu + \varepsilon_t
\]
(12)
όπου \(\Gamma_i = -(I - \Pi_1 - \Pi_2 - \ldots - \Pi_i) \), \(i = 1, \ldots, k-1 \), \(\Gamma_k = -\Pi \) (βαθμός (rank) της μήτρας \(\Pi \)), και \(\mu' = \) διάνυσμα σταθερών όρων.

Η μήτρα των συντελεστών \(\Gamma_k \) προσδιορίζεται τα μακροχρόνια λύση στο υπόδειγμα (10). Η μακροχρόνια μήτρα ισορροπίας βαθμού \(r, \Pi \), ορίζεται ως \(-\Gamma_k\) και παρέχει το βαθμό της μήτρας ισορροπίας \(\Pi \), η οποία καθορίζει τον αριθμό των στατιστικά σημαντικών συνολοκληρωμένων σχέσεων μεταξύ των μεταβλητών του συστήματος (10).

Επειδή οι μεταβλητές \(\Delta X_t \) και \(\Delta X_{t-1} \) είναι στάσιμες (\(I(0) \)), και ο όρος \(e \) θα πρέπει να είναι επίσης \(I(0) \), προκειμένου να εκτιμήσουμε το υπόδειγμα. Επειδή ομως οι μεταβλητές \(X_{t+k} \) είναι \(I(1) \), η ολοκληρωσιμότητα του όρου \(e \) εξαρτάται από το βαθμό της μήτρας \(\Pi \).

Ορίζονται δύο μήτρες \(n \times r \), \(\alpha \) και \(\beta \) ώστε να είναι:

\[
\Pi = \alpha \beta'
\]

όπου οι στήλες της μήτρας \(\beta \) είναι τα \(r \) συνολοκληρωμένα διανύσματα, ώστε \(\beta' X_{t+k} \sim I(0) \), και οι συντελεστές της μήτρας \(\alpha \) δηλώνουν τη μέση ταχύτητα (βαθμό) προσαρμογής προς την κατάσταση ισορροπίας. Η μέθοδος του Johansen εκτιμά την εξίσωση \(VAR \), όταν \(\mu = 0 \) και συνήθως \(\Pi \) να είναι μικρότερος από τον αριθμό των μεταβλητών, δηλαδή όταν \(r < n \) (δηλαδή o βαθμός της \(\Pi \) να μην είναι πλήρης (full rank)). Τότε οι μεταβλητές του διανύσματος \(X \) είναι συνολοκληρωμένες.

Ο Johansen (1988) ανέπτυξε τη μέθοδο της μέγιστης πιθανοφάνειας για την εκτίμηση των \(a \) και \(\theta \) και το τεστ του λόγου της πιθανοφάνειας για τον καθορισμό του αριθμού των στατιστικά σημαντικών συνολοκληρωμένων διανύσματων, \(r \).

Η στατιστική του λόγου της πιθανοφάνειας (Likelihood Ratio) για τον έλεγχο της μηδενικής υπόθεσης ότι υπάρχουν το πολύ \(r \) συνολοκληρωμένα διανύσματα είναι η στατιστική του ίχνους (trace):

\[
2 \log Q = LR = T \sum_{i=r+1}^{n} \log (1- \lambda_i)
\]

όπου \(\lambda_i \) αντιστοιχεί στις \(n-r \) ελάχιστες ιδιοτιμές (eigenvalues).

Επιπλέον η στατιστική του λόγου της πιθανοφάνειας για τον έλεγχο μηδενικής υπόθεσης (\(H_0 \)) ότι υπάρχουν το πολύ \(r \) συνολοκληρωμένα διανύσματα, έναντι της εναλλακτικής υπόθεσης (\(H_1 \)) ότι υπάρχουν \(r+1 \) συνολοκληρωμένα διανύσματα, είναι η στατιστική της μέγιστης ιδιοτιμής.

\[
\lambda_{\text{max}} = T \log (1- \lambda_{r+1})
\]

Αν και οι δύο στατιστικές δεν έχουν τυποποιημένες κατανομές, οι κατά προσέγγιση κριτικές τιμές έχουν κατασκευασθεί με τη μέθοδο Monte Carlo α-

Ένα μεγάλο πλεονέκτημα της μεθόδου του Johansen είναι ότι αυτή επιτρέπει την επιβολή και τον άμεσο έλεγχο γραμμικών περιορισμών στο συνολικό κληρωμένο διάνυσμα. Η στατιστική για τον έλεγχο των περιορισμών δίνεται από την (16):

\[
2\log Q = T \sum_{i=1}^{r} \left\{ \frac{(1 - \hat{l}_i)}{(1 - \lambda_i)} \right\}
\]

όπου \(\hat{l}_i\) και \(\hat{\lambda}_i\) δηλώνουν τις r μέγιστες ιδιοτιμές του υποδείγματος με περιορισμούς και χωρίς περιορισμούς αντίστοιχα. Η κατανομή των στατιστικών του ίχνους και της μέγιστης ιδιοτιμής επηρεάζεται από την ύπαρξη γενικού σταθερού όρου, έστω \(\mu\), στο υπόδειγμα VAR (10). Η στατιστική για τον έλεγχο του γενικού σταθερού είναι στατιστική του λόγου πιθανοφάνειας.

\[
-2\log[Q: H'(r)| H(r)] = -T \sum \log \left\{ \frac{(1 - \hat{l}_i)}{(1 - \hat{\lambda}_i)} \right\}
\]

όπου Η και \(H^*\) δηλώνουν την υπόθεση ύπαρξης γενικού και περιορισμένου σταθερού (δηλαδή μη ύπαρξη σταθερός) αντίστοιχα, \(\hat{\lambda}_i\) και \(\hat{l}_i\) είναι n-ελάχιστες ιδιοτιμές του αντιστοίχου υποδείγματος. Η κατανομή της στατιστικής αυτής ασυμπτωτικά ακολουθεί την κατανομή \(X^2\) με βαθμούς ελευθερίας \(n-r\).

Ο πίνακας 2 παρουσιάζει τους ελέγχους που έγιναν για ορθή (ή μη) εξειδίκευση των καταλοίπων των εκτιμηθέντων υποδείγματών VAR, όπως επίσης και τον έλεγχο της εξειδίκευσης του αριθμού των υστερήσεων στο υπόδειγμα VAR, με τη βοήθεια του τεστ του λόγου της πιθανοφάνειας του Sims (1980), λαμβάνοντας υπόψη τους βαθμούς ελευθερίας. Αρχικά ο μέγιστος αριθμός υστερήσεων ήταν 6 (υστερήσεις χωρίς περιορισμούς), ενώ στη συνέχεια, με βάση το τεστ που αναφέραμε προηγουμένως, καταλήξαμε στον αριθμό υστερήσεων με περιορισμούς (ίσος με 4), που είναι τελικά ο αριστοτεμάχος υστερήσεων που εξασφαλίζει την ικανοποίηση όλων των διαγνωστικών ελέγχων των καταλοίπων, όπως φαίνεται από τον πίνακα 2.

ΠΙΝΑΚΑΣ 2

<table>
<thead>
<tr>
<th>Εξαρτημένη μεταβλητή</th>
<th>SEE (21)</th>
<th>N(2)</th>
<th>H(1)</th>
<th>σ^2</th>
<th>LM Sims test</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0.05214</td>
<td>14.6156</td>
<td>1.5453</td>
<td>0.0784</td>
<td>0.00423</td>
</tr>
<tr>
<td>m</td>
<td>0.0210</td>
<td>15.2386</td>
<td>2.6837</td>
<td>0.0921</td>
<td>0.00011</td>
</tr>
<tr>
<td>m^*</td>
<td>0.0127</td>
<td>39.3895</td>
<td>0.3977</td>
<td>0.2347</td>
<td>0.00001</td>
</tr>
<tr>
<td>y</td>
<td>0.0180</td>
<td>38.7314</td>
<td>0.5115</td>
<td>1.3175</td>
<td>0.00006</td>
</tr>
<tr>
<td>y^*</td>
<td>0.0144</td>
<td>22.8180</td>
<td>0.4049</td>
<td>0.1934</td>
<td>0.00002</td>
</tr>
<tr>
<td>R</td>
<td>0.4050</td>
<td>31.3937</td>
<td>4.9078</td>
<td>0.0255</td>
<td>15.5098</td>
</tr>
<tr>
<td>R^*</td>
<td>0.4850</td>
<td>34.0281</td>
<td>1.7106</td>
<td>0.0573</td>
<td>31.8826</td>
</tr>
</tbody>
</table>

SEE φανερώνει το τυπικό σφάλμα της εξίσωσης (standard error of equation), Υ(21) είναι η στατιστική Ljung-Box για τον έλεγχο της αυτοσυχέτησης στα κατάλοιπα (dιαταρακτικούς όρους) με 21 βαθμούς ελευθερίας, σ^2 είναι η διακύμανση, H(1) είναι η στατιστική του πολλαπλασιαστή Lagrange (Lagrange Multiplier) για τον έλεγχο της ετεροσκεδαστικότητας που στηρίζεται στην παλινδρόμηση των τετραγώνων των όρων σφάλματος και των τετραγώνων των τιμών εκτίμησης, και ακολουθεί την κατανομή χ^2 με 1 βαθμό ελευθερίας, N(2) είναι η στατιστική των Bera και Jarque (1980) για τον έλεγχο της κανονικότητας (normality) των όρων σφάλματος και ακολουθεί την κατανομή χ^2 με 2 βαθμούς ελευθερίας. Οι αριθμοί στις παρενθέσεις αναφέρονται στα οριακά επίπεδα σημαντικότητας. Ο αστερίκκος φανερώνει σημαντικότητα σε επίπεδο 1% και χίουρες σε 5%. Στην τελευταία στήλη παρουσιάζεται το τεστ του λόγου της πιθανοφάνειας του Sims, με βάση το οποίο γίνεται η επιλογή του αριθμού των υστερήσεων και ακολουθεί την κατανομή χ^2 με 96 βαθμούς ελευθερίας.

Από τον ανωτέρω πίνακα προκύπτει ότι οι διαταρακτικοί όροι ικανοποιούν τους ελέγχους της αυτοσυχέτησης, της κανονικότητας και της ετεροσκεδαστικότητας. Επίσης το LR τεστ του Sims κάνει δεκτή την υπόθεση ύπαρξης 4 υστερήσεων στο υπόδειγμα VAR έναντι 6 υστερήσεων.

Στον πίνακα 3 παρουσιάζονται τα τεστ της συνολικής ερωτήσας (αύξηση των στατιστικά σημαντικών διανυσμάτων συνολικής ερωτήσας) που έγιναν με τη μέθοδο της μέγιστης πιθανοφάνειας των Johansen και Juselius (1990).

Στον πίνακα 3 παρουσιάζονται τα τεστ των Johansen-Juselius, όσον αφορά την παρουσία γραμμικής τάσης στο μή θάσιμο μέρος των εξετασθέντων στοιχείων, που στηρίζονται στις τιμές των στατιστικών ιχνών και μέγιστων ιδιοστιμών για το υπόδειγμα με περιορισμένο σταθερό όρο και γενικό σταθερό. Η
στατιστική του άξονας φανερώνει ότι δεν πρέπει να απορριφθεί η υπόθεση μη ύπαρξης της γραμμικής τάσης (α’μ = 0). Η μηδενική υπόθεση ότι υπάρχουν 0 συνολικής διανύσματα ή 7 κοινές τάσεις απορρίπτεται με βάση τις τιμές των στατιστικών LR (ήχους και μέγιστων ιδιωτιμών). Ο έλεγχος του άξονας με σταθερά = 0 δεν απορρίπτει την υπόθεση ότι υπάρχουν τουλάχιστον δύο συνολικής διανύσματα, όπως επίσης ότι είναι δυνατόν να υπάρχουν και περισσότερα συνολικής διανύσματα.

Ο αντίστοιχος έλεγχος με σταθερά όρο Φ ≠ 0, α’μ ≠ 0 δεν απορρίπτει την υπόθεση ότι υπάρχει τουλάχιστον ένα συνολικής διανύσμα (ενδέχεται να υπάρχουν και περισσότερα).

Όσο περισσότερα συνολικής διανύσματα υπάρχουν, τόσο περισσότερα στάσης θεωρείται μακροχρόνια η εξίσωση του νομισματικού υποδείγματος της συναλλαγματικής ισοτιμίας.

5 Το πλεονέκτημα ελέγχου των περιορισμών στους συντελεστές των συνολικής διανυσμάτων με τη μέθοδο του Johansen του λόγου της θεωροφάνειας είναι ότι ισχύει και για μη στάσιμες χρονολογικές σειρές, κάτι που δεν ισχύει για τις κλασικές στατιστικές του t και F (Fuller, 1985).
Τα \(r \) και \((n-r)\) φανερώνουν αντίστοιχα τον αριθμό των ιδιοδιανυσμάτων και των κοινών τάσεων. Τα \(T_0^+ \) (\(T_1 \)) και \(m_0^* \) και \(m_0 \) δηλώνουν αντίστοιχα τις στατιστικές του ήχους και των μέγιστων ιδιοτιμών για το περιορισμένο (χωρίς περιορισμό) υπόδειγμα, δηλαδή για το υπό-

dειγμα με περιορισμένο σταθερό (\(\mu = 0 \)) και χωρίς περιορισμό στο σταθερό (σε γραμμική τάση), \(\mu \neq 0 \). Οι στατιστικές \(T_0^+ \) (\(T_1 \)) και

\(m_0^* \) (\(m_0 \)) φανερώνουν αντίστοιχα τις στατιστικές του ήχους και των μέγιστων ιδιοτιμών για \(\mu = 0 \) και \(\mu \neq 0 \), προσαρμοσμένες (adjusted) όμως για μικρό διέγαμμα παρατηρήσεων, σύμφωνα με τον τύπο του Reimers: \([(T-k \cdot p)/T] \times Τιμή Στατιστικής, \) όπου \(T = \) αριθμός παρα-

tηρήσεων, \(k = \) αριθμός επιλεγειστών υστερήσεων, \(p = \) αριθμός εξισώσεων (αριθμός μεταβλητών του συστήματος). Οι κριτικές τιμές ελή-

φθέγχονται από τους πίνακες \(1^* \) και \(1 \) που κατασκεύασε o Osterwald-Lenum (1992).
Ο πίνακας 4 παρουσιάζει τον έλεγχο των περιορισμών στους συντελεστές του υποδείγματος (7)´.

ΠΙΝΑΚΑΣ 4

Ελέγχος περιορισμού στους συντελεστές του υποδείγματος

\[s = \delta_1 m + \delta_2 m^* + \delta_3 y + \delta_4 y^* + \delta_5 R + \delta_6 R^* \]

<table>
<thead>
<tr>
<th>Περιορισμός</th>
<th>(\chi^2 (\text{kx}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₁ : (\delta_1 = -\delta_2)</td>
<td>(\chi^2 (1) = 1.5027 (0.220))</td>
</tr>
<tr>
<td>H₂ : (\delta_3 = -\delta_4 (\delta_3 + \delta_4 = 0))</td>
<td>(\chi^2 (1) = 1.3321 (0.248))</td>
</tr>
<tr>
<td>H₃ : (\delta_5 = -\delta_6 (\delta_5 + \delta_6 = 0))</td>
<td>(\chi^2 (1) = 34.9619 (0.00))</td>
</tr>
<tr>
<td>H₄ : (\delta_1 = 1)</td>
<td>(\chi^2 (1) = 0.1112 (0.738))</td>
</tr>
<tr>
<td>H₅ : (\delta_2 = -1)</td>
<td>(\chi^2 (1) = 0.2132 (0.603))</td>
</tr>
<tr>
<td>H₆ : (H_1 \cap H_2)</td>
<td>(\chi^2 (2) = 1.5607 (0.548))</td>
</tr>
<tr>
<td>H₇ : (H_1 \cap H_4)</td>
<td>(\chi^2 (2) = 3.8385 (0.143))</td>
</tr>
<tr>
<td>H₈ : (H_1 \cap H_4 \cap H_2)</td>
<td>(\chi^2 (3) = 4.4545 (0.208))</td>
</tr>
<tr>
<td>H₉ : (H_1 \cap H_4 \cap H_2 \cap H_3)</td>
<td>(\chi^2 (4) = 62.0260 (0.000))</td>
</tr>
<tr>
<td>H₁₀ : (H_1 \cap H_2 \cap H_3)</td>
<td>(\chi^2 (3) = 57.2001 (0.000))</td>
</tr>
</tbody>
</table>

Η στατιστική του λόγου της πιθανοφάνειας (LR) είναι κατανομή \(\chi^2 \) με βαθμούς ελευθερίας kx, όπου k είναι ο αριθμός των περιορισμών και r είναι ο αριθμός των συνολικώς ομάδων διανυσμάτων (εξίσωση 16). Οι αριθμοί στις παρενθέσεις αναφέρονται στα επίπεδα σημαντικότητας.

Στον πίνακα 4 ελέγχονται δέκα υποθέσεις μεμονωμένα και σε συνδυασμό. Τα αποτελέσματα δείχνουν ότι ενώ γίνονται δεκτές οι υποθέσεις της συμμετρίας και της αναλογικότητας, όσον αφορά την προσοφορά χρήματος (\(\delta_1 = -\delta_2 = 1 \)), και η υπόθεση της αναλογικότητας, όσον αφορά τη μεταβλητή της βιομηχανικής παραγωγής (\(y \)), τόσο μεμονωμένα όσο και σε συνδυασμό με τις υποθέσεις που αναφέρονται στην προσοφορά χρήματος (\(m \)), ωστόσο δεν γίνεται δεκτή η υπόθεση της αναλογικότητας που αναφέρεται στο μακροχρόνιο επιτόκιο (\(R \)). Εάν δε ταυτόχρονα επιβάλλουμε τους περιορισμούς της συμμετρίας και της αναλογικότητας για την προσοφορά χρήματος, και τους περιορισμούς της αναλογικότητας για τη βιομηχανική παραγωγή και το μακροχρόνιο επιτόκιο, παρατηρούμε ότι εξεταζόμενες από κοινού οι υποθέσεις αυτές δεν γίνονται δεκτές. Δηλαδή ο περιορισμός στο \(R \) δημιουργεί πρόβλημα στους περιορισμούς που επιβάλλονται στο \(m \) και \(y \), έτσι ώστε να μην μπορούμε να δεχθούμε ταυτόχρονα όλους τους περιορισμούς του νομισματικού υποδείγματος. Με άλλα λόγια, ως καλύτερη περίπτωση εμφανίζεται η μορφή του χωρίς περιορισμούς στους συντελεστές νομισματικού υποδείγματος προορισμού της συναλλαγματικής ισοτιμίας ¥en/αμερικ. δολ.
Τέλος, στον πίνακα 5 εμφανίζονται οι τιμές των συντελεστών των στατιστικά σημαντικών συνολοκληρωμένων διανυσμάτων. Συγκεκριμένα παρουσιάζονται οι τιμές δύο συνολοκληρωμένων διανυσμάτων.

ΠΙΝΑΚΑΣ 5

Έλεγχος των στατιστικά σημαντικών συνολοκληρωμένων διανυσμάτων

\[s = \delta_1 m + \delta_2 m^* + \delta_3 y + \delta_4 y^* + \delta_5 R + \delta_6 R^* \]

<table>
<thead>
<tr>
<th></th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
<th>(\delta_5)</th>
<th>(\delta_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7693</td>
<td>-1.9823</td>
<td>5.5374</td>
<td>-4.7506</td>
<td>-0.2853</td>
<td>-0.0192</td>
</tr>
<tr>
<td>2</td>
<td>5.5881</td>
<td>-0.3300</td>
<td>-5.7310</td>
<td>2.3706</td>
<td>-0.0236</td>
<td>0.0598</td>
</tr>
</tbody>
</table>

Παρατηρώντας τα αποτελέσματα του πίνακα 5 διαπιστώνουμε ότι δεν υπάρχει ένα μοναδικό δίανυσμα που είναι συνεπές με το νομισματικό υπόδειγμα από άποψη των προσήμων των συντελεστών. Από τη στιγμή που προκύπτουν περισσότερα από ένα συνολοκληρωμένο διανύσματα, το ερώτημα που ανακύπτει είναι πώς θα γίνει η επιλογή εκείνου του συνολοκληρωμένου διανύσματος που θα περιγράφει καλύτερα τη διαδικασία με την οποία προσδιορίζεται η συναλλαγματική ισοτιμία μακροχρόνια. Η συνήθης πρακτική είναι η επιλογή του συνολοκληρωμένου διανύσματος που θα έχει περισσότερη οικονομική έννοια, που σημαίνει ότι τα πρόσημα και τα μεγέθη των συντελεστών να συμφωνούν με εκείνα που προβλέπονται από τη θεωρία του νομισματικού υποδείγματος, χρησιμοποιώντας τα κατάλοιπα του επιλεγέντος συνολοκληρωμένου διανύσματος, προκειμένου να ελέγξουμε την προγνωστική δύναμη των υποδειγμάτων διόρθωσης σφάλματος (error correction models)\(^6\), τα οποία είναι δυναμικά υποδειγμάτα βραχυχρόνιας προσαρμογής, και με τα οποία θα ασχοληθούμε σε επόμενη εργασία μας.

Η ταυτοποίηση (identification) όμως του συνολοκληρωμένου διανύσματος στην περίπτωση εύρεσης πολλών συνολοκληρωμένων διανυσμάτων, που θα πρέπει να πούμε ότι είναι ένα σύμπτωμα της μεθόδου του Johansen, που στηρίζεται σε μία τέτοια ad hoc διαδικασία (χρησιμοποίηση καταλοίπων), παρουσιάζει μειονεκτήματα.

Πρόσφατα μία άλλη μέθοδος, που αναπτύχθηκε από τους Bagliano, Fareu- ro και Muscatelli (1991), προκειμένου να δώσει λύση στο πρόβλημα της ταυτο-
ποίησης, όταν προκύπτουν πολλά συνολοκληρωμένα διανύσματα, είναι η χρη-
σιμοποίηση της μεθόδου του Johansen στην εκτίμηση ταυτοχρόνων εξισώσε-
ων συνολοκληρωμένων μεταβλητών, που σημαίνει, με άλλα λόγια, την κατα-
σκευή ενός γενικού δυναμικού συστήματος διόρθωσης σφάλματος, όπου ο ό-
ρος διόρθωση σφάλματος σε κάθε εξίσωση \(\Pi_{k+1} \) θα δίνεται από την κατάλλη-
λη σειρά της μακροχρόνιας μήτρας \(\Pi \) πολλαπλασιαζόμενη με το διάνυσμα
των συνολοκληρωμένων μεταβλητών με υστέρηση, \(X_{t-1} \). Στην περίπτωση αυτή,
δηλαδή, έχουμε ταυτόχρονη εκτίμηση συναρτήσεων που περιγράφουν τη συ-
μπεριφορά της συναλλαγματικής ισοτιμίας όσο και των άλλων μεταβλητών.
Και τούτο διότι πράγματι σήμερα πολλοί είναι οι οικονομολόγοι που αμφισβη-
τούν κατά πόσον είναι σωστό η συμπεριφορά της συναλλαγματικής ισοτιμίας
ενός νομίσματος, σε σχέση με κάποιο άλλο νόμισμα, να εκφράζεται από ένα υ-
πόδειγμα μιας μοναδικής εξίσωσης.

Στο επόμενο τμήμα προχωρούμε στον έλεγχο της υπόθεσης της ισοδυ-
ναμίας των Αγοραστικών Δυνάμεων, αφού το νομισματικό υπόδειγμα και το υ-
πόδειγμα του Frankel δέχονται ότι ισχύει η υπόθεση αυτή βραχυχρόνια και μα-
κροχρόνια αντίστοιχα. Επομένως, θα πρέπει να εξετάσουμε εμπειρικά την ισχύ
της υπόθεσης αυτής ως ένα μακροχρόνιο φαινόμενο.

4. ΕΛΕΓΧΟΣ ΤΗΣ ΥΠΟΘΕΣΗΣ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ ΤΩΝ
ΑΓΟΡΑΣΤΙΚΩΝ ΔΥΝΑΜΕΩΝ ΜΑΚΡΟΧΡΟΝΙΑ

4.1. Εισαγωγή

Αφού τα εμπειρικά ευρήματα στο προηγούμενο τμήμα δέχονται ότι του-
λάχιστον υπάρχουν δύο συνολοκληρωμένα διανύσματα, αυτό έμμεσα οδηγεί
στην αποδοχή της υπόθεσης της ισοδυναμίας των αγοραστικών δυνάμεων ως
mία κατάλληλη θεωρία, πάνω στην οποία στηρίζεται η θεωρία προσδιορισμού
της συναλλαγματικής ισοτιμίας.

Σύμφωνα με την "απόλυτη" παραλλαγή της θεωρίας της ισοδυναμίας των
αγοραστικών δυνάμεων, PPP, η συναλλαγματική τιμή και ο λόγος των τιμών
dύο χωρών μεταβάλλονται προς την ίδια κατεύθυνση διαχρονικά, όποτε τότε
mία μονάδα εγχώριου νομίσματος θα έχει την ίδια αγοραστική δύναμη και στις
dύο χώρες.

Στην πράξη όμως διάφοροι λόγοι οδηγούν σε απόκλιση της πραγματικής
συναλλαγματικής ισοτιμίας από τη συναλλαγματική ισοτιμία νομισμάτων δύο
χωρών, που αντιστοιχεί στη συναλλαγματική τιμή ισορροπίας, όπως π.χ. η ύ-
παρξη μη εμπορευόμενων (non-traded) αγαθών και υπηρεσιών, διαφορετικά ε-
πίπεδα παραγωγικότητας και οικονομικής ανάπτυξης και διαφορετικές κατα-

Επειδή επομένως δεν προκύπτει από τις εργασίες που αναφέραμε πιο πάνω μία σαφής θέση ως προς την αποδοχή ή όχι της PPP, αξίζει να διερευνηθούμε την υπόθεση αυτή χρησιμοποιώντας πρόσφατα στατιστικά στοιχεία και εφαρμόζοντας σύγχρονες οικονομικές μεθόδους, όπως και στην περίπτωση του νομισματικού υποδείγματος προσδιορισμού της συναλλαγματικής ισοτιμίας.

7 Εξαίρεση αποτελεούν οι εργασίες των Edison, 1985b, Ardeni και Lubian, 1989 και Ahking, 1990, από τις οποίες προκύπτει ότι δεν ισχύει η υπόθεση της PPP.
Ο έλεγχος της PPP θα γίνει με τη χρησιμοποίηση αφενός του δείκτη τιμών καταναλωτή (CPI) Ιαπωνίας και Αμερικής και αφετέρου του δείκτη τιμών χονδρικής πώλησης (WPI) Ιαπωνίας και Αμερικής. Δεδομένου ότι τα περισσότερα αγαθά που περιλαμβάνονται στον δείκτη CPI είναι μη εμπορεύσιμα.

4.2. Υπόδειγμα συνολικής ρωσίας της PPP

Προκειμένου να ελέγξουμε εμπειρικά τηνPPP, χρησιμοποιούμε την εξίσωση

\[s_t = \alpha_0 + \alpha_1 p - \alpha_2 p_t^* + u_t \]

(18)

όπου \(\alpha_0 \) είναι ο σταθερός όρος, \(s_t \) δηλώνει την ονομαστική συναλλαγματική ισοτιμία Yen/$, \(p \) και \(p_t^* \) είναι αντίστοιχα οι δείκτες τιμών καταναλωτή Ιαπωνίας και Αμερικής, και \(u_t \) είναι ο όρος σφάλματος.

Όπως είπαμε και προηγουμένως, θα χρησιμοποιήσουμε εναλλακτικά και τους δείκτες τιμών χονδρικής πώλησης Ιαπωνίας (w) και Αμερικής (w*). Όλες οι μεταβλητές εκφράζονται σε λογαριθμούς.

Όπως φαίνεται από τη (18), δεν επιβάλλουμε εκ των προτέρων, χωρίς προηγούμενο έλεγχο, ούτε τον περιορισμό της συμμετρίας, \(\alpha_1 = \alpha_2 \), ούτε τον περιορισμό της αναλογικότητας, \(\alpha_1 = \alpha_2 = 1 \).

Η PPP ισχύει μακροχρόνια, εφόσον ο στοχαστικός όρος, \(u_t \), ακολουθεί μία διαδικασία στάσιμου αυτοπαλινδρομικού κινητού μέσου (ARMA).

Ο πίνακας 6 παρουσιάζει τα αποτελέσματα του ελέγχου στασιμότητας χρησιμοποιώντας τα τεστ DF/ADF και Phillips-Perron \(Z(\hat{t}_u) \).
ΠΙΝΑΚΑΣ 6
Ελέγχος μοναδιαίας ρίζας για την περίοδο 1977Q₁ - 1992Q₄

<table>
<thead>
<tr>
<th></th>
<th>$DF(\hat{\eta})$</th>
<th>$ADF(\hat{\eta})$</th>
<th>$LM(4)$</th>
<th>$Z(\hat{\eta})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>-0.7841(0)</td>
<td>-</td>
<td>0.348</td>
<td>-1.9452</td>
</tr>
<tr>
<td>p</td>
<td>-</td>
<td>-1.9015(4)</td>
<td>0.1950</td>
<td>-2.0803</td>
</tr>
<tr>
<td>p*</td>
<td>-</td>
<td>-2.8132(3)</td>
<td>0.547</td>
<td>-1.8394</td>
</tr>
<tr>
<td>w</td>
<td>-</td>
<td>-2.2442(1)</td>
<td>0.726</td>
<td>-1.6204</td>
</tr>
<tr>
<td>w*</td>
<td>-</td>
<td>-2.7782(3)</td>
<td>0.511</td>
<td>-1.9264</td>
</tr>
<tr>
<td>Δs</td>
<td>-6.2289(0)</td>
<td>-</td>
<td>0.845</td>
<td>-6.3241</td>
</tr>
<tr>
<td>Δp</td>
<td>-2.4032(7)*</td>
<td></td>
<td>0.634</td>
<td>-8.2160</td>
</tr>
<tr>
<td>Δp*</td>
<td>-2.4350(1)*</td>
<td></td>
<td>0.020**</td>
<td>-4.0743</td>
</tr>
<tr>
<td>Δw</td>
<td>-3.3668(0)</td>
<td></td>
<td>0.580</td>
<td>-3.6722</td>
</tr>
<tr>
<td>Δw*</td>
<td>-5.8443(3)</td>
<td></td>
<td>0.336</td>
<td>-5.6033</td>
</tr>
</tbody>
</table>

* Τα αποτελέσματα δείχνουν ότι Δp ~ 1 (2) και Δp* ~ 1 (2). Αν όμως ληφθεί υπόψη ότι οι αντίστοιχες τιμές των μεταβλητών αυτών πλησιάζουν την κριτική τιμή του 10% (-2.58) και ότι λόγω του σχετικά μικρού αριθμού παρατηρήσεων εξασθενίζει κάπως η δύναμη των ελέγχων για στασιμότητα των σειρών, τότε θα μπορούσε να υποστηριχθεί ότι πιθανόν να είναι Δp ~ 1 (1) και Δp* ~ 1 (1).

** Σημαντικό σε 1%.
Οι παρατηρήσεις του πίνακα 1 συχνότατα και στον πίνακα 6.

Από τον ανωτέρω πίνακα προκύπτει ότι όλες οι μεταβλητές είναι στασιμές σε πρώτες διαφορές, με εξαίρεση τις μεταβλητές Δp και Δp*. Κατά συνέπεια, προχωρούμε στο επόμενο στάδιο του ελέγχου της συνολικής ρίζας των μεταβλητών, δηλαδή να ελέγξουμε αν η υπόθεση της PPP αποτελεί μία σταθερή σχέση μακροχρόνια.

Ο πίνακας 7 παρουσιάζει τους ελέγχους (τεστ) για την ορθή εξειδίκευση του αριθμού των υστερήσεων στο υπόδειγμα VAR της PPP με τη χρησιμοποίηση του δείκτη τιμών καταναλωτή και του δείκτη χονδρικής πώλησης ιαπωνίας και Αμερικής.
ΠΙΝΑΚΑΣ 7
Έλεγχος ορθής εξειδίκευσης του υποδείγματος VAR

<table>
<thead>
<tr>
<th>Εξαρτημένη μεταβλητή</th>
<th>SEE</th>
<th>Q(21)</th>
<th>N(2)</th>
<th>H(1)</th>
<th>(\sigma^2)</th>
<th>LM Sims test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>0.0059</td>
<td>16.9261</td>
<td>0.5708</td>
<td>0.9176</td>
<td>-</td>
<td>17.6285 (0.4803)</td>
</tr>
<tr>
<td>(p^*)</td>
<td>0.0046</td>
<td>14.4154</td>
<td>1.5817</td>
<td>0.0253</td>
<td>-</td>
<td>(υστερήσεις με περιορισμό/υστερήσεις χωρίς περιορισμό, 4/6)</td>
</tr>
<tr>
<td>(w)</td>
<td>0.0106</td>
<td>9.9763</td>
<td>0.5662</td>
<td>0.0554</td>
<td>-</td>
<td>15.1951 (0.6485)</td>
</tr>
<tr>
<td>(w^*)</td>
<td>0.0093</td>
<td>17.3530</td>
<td>0.7076</td>
<td>0.1941</td>
<td>-</td>
<td>(υστερήσεις με περιορ./υστερ. χωρίς περιορισμό, 4/6)</td>
</tr>
</tbody>
</table>

Οι παρατηρήσεις στον πίνακα 2 ισχύουν και για τον πίνακα 7. Οι τιμές στη στήλη \(\sigma^2\) είναι πολύ μικρές γι’ αυτό δεν αναφέρονται.

Από τον πίνακα 7 προκύπτει ότι τόσο με τη χρησιμοποίηση του δείκτη CPI όσο και με τη χρησιμοποίηση του δείκτη WPI ο άριστος αριθμός υστερήσεων στο υποδείγμα VAR είναι 4 έναντι 6 υστερήσεων, που επίσης δοκιμάστηκαν.

Στους πίνακες 8 και 9 παρουσιάζονται τα τεστ της συνολικής ρετροσημείωσης (ευρεση στατιστικά σημαντικών διανυσμάτων συνολικής ρετροσημείωσης) με τη χρησιμοποίηση των δεικτών CPI και WPI αντίστοιχα με την μέθοδο των Johansen-Juselius.

Από τον πίνακα 8 φαίνεται ότι η PPP δεν αποτελεί μία σταθερή σχέση μακροχρόνια, αφού και με τις δύο στατιστικές του έννοια και των μέγιστων ιδιοτητών μη υπάρχει ένα στατιστικά σημαντικό συνολικής ρετροσημείωμα διάνυσμα μεταξύ \(s\) και \(p\). Αντίθετα, από τον πίνακα 9 προκύπτει ότι η PPP αποτελεί μία σταθερή σχέση μακροχρόνια, αφού τουλάχιστον με τη στατιστική του έννοια απορρίπτεται η μηδενική υπόθεση \(r = 0\). Βλέπουμε, λοιπόν, ότι αν ανοιχτούμε το σφάλμα μέτρησης των δεικτών των τιμών, λαμβάνοντας υπόψη τον δείκτη τιμών καταναλωτή, έχουμε μεροληπτικά αποτελέσματα ως προς τη μη αποδοχή της PPP. Βεβαιώνει όμως ότι η αποδοχή της PPP, ειδικά για χώρες βιομηχανικά αναπτυγμένες, όπως είναι η Ιαπωνία και Αμερική, που ακολουθούν σχεδόν τις ίδιες μακροοικονομικές πολιτικές, χωρίς μεγάλες μεταβολές των τιμών και ισοτιμών των νομισμάτων τους, από οικονομική άποψη γίνεται απόλυτα δεκτή. Ωστόσο, όμως βλέπουμε ότι όταν λάβουμε υπόψη το σφάλμα μέτρησης χρησιμοποιώντας τον δείκτη χονδρικής πώλησης, η PPP γίνεται δεκτή.
ΠΙΝΑΚΑΣ 8
Ελεγχος συνολικήρωσης των μεταβλητών S, r, p

<table>
<thead>
<tr>
<th>H_0</th>
<th>$n-r$</th>
<th>T_r^*</th>
<th>$T_{r}^{*} \text{ adj}$</th>
<th>95%</th>
<th>T_r</th>
<th>T_{r}^{adj}</th>
<th>95%</th>
<th>H_0</th>
<th>m_λ^*</th>
<th>$m_\lambda^{*} \text{ adj}$</th>
<th>95%</th>
<th>m_1</th>
<th>m_1^{adj}</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r \leq 2$</td>
<td>1</td>
<td>3.52</td>
<td>2.86</td>
<td>9.24</td>
<td>1.50</td>
<td>1.21</td>
<td>3.76</td>
<td>$r \leq 2$</td>
<td>$r \leq 3$</td>
<td>3.52</td>
<td>2.86</td>
<td>9.24</td>
<td>1.50</td>
<td>1.21</td>
</tr>
<tr>
<td>$r \leq 1$</td>
<td>2</td>
<td>14.50</td>
<td>11.78</td>
<td>19.96</td>
<td>12.14</td>
<td>9.86</td>
<td>15.41</td>
<td>$r \leq 1$</td>
<td>$r \leq 2$</td>
<td>10.97</td>
<td>8.92</td>
<td>15.67</td>
<td>10.64</td>
<td>8.64</td>
</tr>
<tr>
<td>$r = 0$</td>
<td>3</td>
<td>38.22</td>
<td>31.05</td>
<td>34.91</td>
<td>35.69</td>
<td>29.00</td>
<td>29.68</td>
<td>$r = 0$</td>
<td>$r = 1$</td>
<td>23.71</td>
<td>19.26</td>
<td>22.00</td>
<td>23.54</td>
<td>19.13</td>
</tr>
</tbody>
</table>

Οι παρατηρήσεις του πίνακα 3 ισχύουν και για τον πίνακα 8.

ΠΙΝΑΚΑΣ 9
Ελεγχος συνολικήρωσης των μεταβλητών S, w, w^*

<table>
<thead>
<tr>
<th>H_0</th>
<th>$n-r$</th>
<th>T_r^*</th>
<th>$T_{r}^{*} \text{ adj}$</th>
<th>95%</th>
<th>T_r</th>
<th>T_{r}^{adj}</th>
<th>95%</th>
<th>H_0</th>
<th>m_λ^*</th>
<th>$m_\lambda^{*} \text{ adj}$</th>
<th>95%</th>
<th>m_1</th>
<th>m_1^{adj}</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r \leq 2$</td>
<td>1</td>
<td>7.67</td>
<td>6.23</td>
<td>9.24</td>
<td>2.50</td>
<td>2.03</td>
<td>3.76</td>
<td>$r \leq 2$</td>
<td>$r \leq 3$</td>
<td>7.67</td>
<td>6.23</td>
<td>9.24</td>
<td>2.50</td>
<td>2.03</td>
</tr>
<tr>
<td>$r \leq 1$</td>
<td>2</td>
<td>17.93</td>
<td>14.56</td>
<td>19.96</td>
<td>12.75</td>
<td>10.35</td>
<td>15.41</td>
<td>$r \leq 1$</td>
<td>$r \leq 2$</td>
<td>10.25</td>
<td>8.32</td>
<td>15.67</td>
<td>10.24</td>
<td>8.32</td>
</tr>
<tr>
<td>$r = 0$</td>
<td>3</td>
<td>44.78</td>
<td>36.38</td>
<td>34.91</td>
<td>36.88</td>
<td>29.97</td>
<td>29.68</td>
<td>$r = 0$</td>
<td>$r = 1$</td>
<td>26.84</td>
<td>21.80</td>
<td>22.00</td>
<td>24.13</td>
<td>19.60</td>
</tr>
</tbody>
</table>

Οι παρατηρήσεις του πίνακα 3 ισχύουν και για τον πίνακα 9.
Τέλος, στον πίνακα 10 παρουσιάζονται τα αποτελέσματα του ελέγχου της συμμετρίας, $\alpha_1 = \alpha_2$, και της αναλογικότητας, $\alpha_1 = 1 = \alpha_2$. Ο έλεγχος αυτών των υποθέσεων των γραμμικών περιορισμών στο συνολικό πληρωμένο διάνυσμα γίνεται με τη χρησιμοποίηση του τεστ X^2 του Johansen (1991).

ΠΙΝΑΚΑΣ 10

<table>
<thead>
<tr>
<th>Μητρική υπόθεση</th>
<th>X^2 (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_1: \alpha_1 = \alpha_2$</td>
<td>1.0492 (0.306)</td>
</tr>
<tr>
<td>$H_2: \alpha_1 = \alpha_2 = 1$</td>
<td>21.0688 (0.000)</td>
</tr>
</tbody>
</table>

Οι παρατηρήσεις του πίνακα 4 ισχύουν και στον πίνακα 10.

Από τον ανωτέρω πίνακα προκύπτει ότι δεν γίνεται δεκτή η υπόθεση της αναλογικότητας, ενώ γίνεται δεκτή η υπόθεση της συμμετρίας. Δηλαδή ισχύει η PPP μακροχρόνια, όχι όμως με την αυστηρή μορφή της απόλυτης παραλλαγής (absolute version).

Η απόρριψη της αναλογικότητας σημαίνει ότι η πραγματική συναλλαγματική ισοτιμία Yen/ $\$ δεν αποτελεί μία στάση σχέση. Ο στατιστικός έλεγχος έδειξε ότι μάλλον ακολουθεί τη διαδικασία "τυχαίου περιπάτου" (random walk).

5. ΣΥΜΠΕΡΑΣΜΑΤΑ

Από την εργασία αυτή προκύπτουν δύο βασικά συμπεράσματα: Πρώτο, το νομισματικό υπόδειγμα προσδιορισμού της συναλλαγματικής ισοτιμίας Yen/ $\$ αποτελεί μία στάση σχέση ισορροπίας μακροχρόνια, και δεύτερο, ότι η υπόθεση της ισοδυναμίας των αγοραστικών δινάμεων (PPP) γίνεται δεκτή ως ένα μακροχρόνιο φαινόμενο, όταν χρησιμοποιείται ο δείκτης χονδρικής πώλησης (WPI). Όλοι οι στατιστικοί έλεγχοι στηρίχθηκαν σε σύγχρονες οικονομικές μεθόδους. Συγκεκριμένα εφαρμόσθηκαν τα τεστ των Dickey και Fuller και Phillips-Perron για τον έλεγχο της στασιμότητας των χρονολογικών σειρών, που χρησιμοποιήθηκαν στο υπόδειγμα μας, και τα τεστ των Johansen και Juselius για τον έλεγχο ύπαρξης συνολικής προσδιορισμένων διανυσμάτων στο νομισματικό υπόδειγμα και στο υπόδειγμα της PPP.

