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ABSTRACT

This tract studies the reachability properties of a stable general equilibrium resul-
ting from an Edgeworth trading process. It is shown on the basis of a relaxed hereditary
nonlinear differential system that under an appropriate definition of stability and reacha-
bility, the reachability of an Edgeworth equilibrium at reasonable time requires one more
assumption than those needed for stability. This additional assumption imposes a re-
striction on the possible time paths of an aggregate utility function.



1. INTRODUCTION*

The issue of how fast a general competitive equilibrium is restored, or for-
mally, the issue of the reachability of such an equilibrium, after a disturbance of
it, is an important one: If restoration is slow and disequilibrium persists, there is
plenty of room for policy intervention even under perfectly competitive conditi-
ons. The issue in hand has not escaped the attention of the literature, which ho-
wever has been unable so far to offer some answers. This in conjunction with
the real-world experience of prolonged disequilibrium situations, has led to the
conclusion that there is nontatonnement trading that has to do with market im-
perfections and/or imperfect competition (see e.g. Nishimura (1922)), and in
general, with «fixprice» elements (see e.g. Silvestre (1986)). It is clear that this
fixprice microeconomics tries to offer a microfoundation of macroeconomics, a
foundation in which general equilibrium is only one out of many other possible
outcomes of trading.

Another type of fixprice microeconomics that remains within the reaims of
«pure» microeconomics (and so call it «orthodox»), argues that the tatonne-
ment process involves adjustments in quantity constraints rather than prices:
An auctioneer repeatedly posits constraints and solicits hypothetical offers until
an equilibrium is reached. Thus, the nontatonnement, the disequilibrium, mo-
del alters the character of the Walrasian tatonnement, but retains the process
(see e.g. Samuelson (1986)). The point is that trading in this fixprice approach,
takes place only in equilibrium. According to the other strand in fixprice micro-
analysis, the orthodox approach can not get rid of this Walrasian feature, be-
cause it does not define the institutional framework of trading, and trade at non—
Walrasian prices requires such a definition (see e.g. Silvestre (1986)). More pre-
cisely, both the Walrasian (or Arrow-Debreu) model and the orthodox fixprice
microeconomics can not give a unique answer to the question «<how many mar-
kets are there (in their models)». That is, strict determination of the number of
markets enables analytically disequilibrium trading that only accidentally may
produce a general equilibrium. At the other end, loose determination of the
number of markets admits analytically trade only under a general equilibrium
state of affairs.

This paper attempts to resolve this trade—off by taking analysis from the fi-
nite dimensional Euclidean space tothe (countably) infinite dimensional Ba-

* | gratefully acknowledge the constructive comments and suggestions of an ano-
nymous referee. Any errors or omissions are of course my own.
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nach space. No one can argue in the latter space that the number of markets is
«perhaps n (one for each good, with the interpretation that in market j good j is
exchanged against an unlisted (n+ 1)th good that disappears after the execu-
tion of the exchanges), or possibly (n—1) (with the interpetation that one of the
goods, say good n, is a means of payment exchanged against good j in market
j), or maybe n(n—1)/2 markets, one for each pair of goods, or even zero markets
(with the interpretation that the equilibrium allocation is implemented by means
other than trading» (Silvestre (1986, p. 197)). We thus manage to achieve a syn-
thesis in fixprice microeconomics. A synthesis in which disequilibrium exchan-
ge is permitted and leads to a general equilibrium. The analysis in Banach spa-
ces allows such exchange, because it alsc allows the incorporation of the time
needed by the «memory of the agents concerning the equilibrium situation» to
bring on the full effects of this memory after a disturbance of the equilibrium.
That is, the key in our approach is the reachability of the equilibrium, i.e. a mat-
ter that could not be tackled in the past because of the above economic theory
considerations and because the speed of adjustment of the excess demand in
the Euclidean space is parametric. in this manner, the orthodox fixprice microe-
conomics and the Walrasian paradigm turn out to be special cases in a more
general apparatus.

Note that our analysis here does not postulate any a priori reasons, like fix-
price elements, for a would-be delay in equilibrium restoration. The delay is
modelled as a time parameter that may take on any nonnegative value for any
reason. Anyway, | think it is time to proceed to the rigorous elaboration of the
topic under study. In what follows, the next section spells out the problem in
hand formally in both Euclidean and Banach spaces. Section 3 derives the
conditions under which stability and reachability are expected to prevail. Secti-

“on 4 concludes this paper with further remarks on the nature of our approach
and theses.

2. AJOINT STABILITY-AND-REACHABILITY APPROACH

The nontatonnement trading process of Edgeworth leads to a stability
theorem via the Liapunov function

V(p,W) = -UW(®)) (1)

where p is a price vector, U is a sum of individual utility functions, W is an allo-
cation of endowments, and t is time (see e.g. Varian (1978, p. 192)). In general,
if the minimum of the Liapunov function V at time t, corresponds to U, = Yo,

the eq. (1) must satisfy the following conditions:
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Ut) = glUWH .1 >0 (teT: = [to.ta) @)

U, = Yo (3)
and W) cA®) (teT) 4)

whare (i) the rule by which the Cartesian product K" [-r,0]xR"xT is mapped
into the set R™:g, (i) the length of the memory of the differential system &)-4):r,
0<r <o, 4T >ty YoeK"[-1,0], and {iii) the endowment control space A()<R™,
are fixed, and (iv) in addition, '

Uys): = U{t+s) se[-r,0]

Note that the inequality t;>to+r reflacts the fact that the stronger memory is the
less r is and hence, the less the difference (t,-1o).

in this paper, we study the problem of the reachability of Y, at time ty by
controlling W(t) when the equilibrium resulting from an Edgeworth trading pro-
cess, Y, is disturbed at time tp, (while the trading process may or may not invol-
ve disequilibrium exchange). To solve this problem, note that the differential s, -
stem (2) — (4) is a nonlinear hereditary system, and we are essentially interested
in its reachability properties. These properties depend on the choice of the sta-
te space C, since the state of the system is given by the function segment U,.
Following Kurcyusz and Olbrot (1977}, the choice of C considered here is the
Sobolev space C=D""[-r,0]. Also, the reachability properties of the system de-
pend on whether the dimension m of the endowment control space is greater
than or less than the dimension n of the Cartesian product K" [-+,0]xR™xT. To
determine this, note that as Shubik (1975, p. 557) points out, «in a disequilibri-
um state every participant must be able independently to choose an alloca-
tion». Therefore, we assume that n=m and following Colonius (1982) and Warga
(1972), we replace W by relaxed, measure-valued, control functions ME (5).
Substituting Win eq. (2) by M we obtain the following relaxed hereditary differe-
ntial system:

U(t) = gUsMB.1) (teT: = [to,t4]) (6)
U, =Yo @3)

Mt eE(t) (5)

I this manner, our problem is formally equivalent to finding out the reachability
properties of the above relaxed system when the state space is the Sobolev
space C=D"[-r,0], 1<qxx.

The reformulation of the system (2) — {4) in terms of (3}, (5), and (6) enables
one to tackle not only the issue of stability, but also the matter of reachability on
the basis of the mathematics of functional analysis. In what follows, we assume
that a final state Y, can be reached via a trajectory U° corresponding to a rela-
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xed control M°cE. Next, reaching U(-r) at time t,-r, tracing the velocity function
U(t-t;) on [t,—r,t,], and assuming that the neighborhood Y,(-r)eR" can be rea-
ched with arbitrarily small deviations from U°, the hereditary impact on the ve-
locity can be kept small, and we can reach U in a neighborhood of Y, in

D™[-r,0] by compensating small deviations from Y, =U0.
c t,

3. THE CONDITIONS FOR REACHABILITY

Notation, Definitions, Assumptions

Let K"(B) be the Banach space of continuous functions on the compact set
BcR™ with values in R". Also, let D™9[h,1], 1< q < x, be the Sobolev space of ab-

solutely continuous function U:[h,I]-R". UeF{,‘[h,l] is a q-integrable bounded

derivative. The symbol |- | denotes the Euclidean norm in a space of finite di-
mensions. The norm in the (also linear) Banach space D™[h] is|U|:=

'(|U(h)|,||U||F )l (Both norms obey Pythagoras’ theorem, but contrary to the Eu-
q

clidean norm, the summation in the distance function of the Banach norm goes
to infinity.) R" xF§[h] is a canonical way identifying D™%[h,I]. co B is the convex
hull of the interior of a set B in a Banach space. A(f)cAq( teT), where A,cR™ is
- compact, t—>A(t) is measurable, and A(t) is closed for all teT. E is the set of M’s
on T:=[t,,t,] with values in the set of Radon probability measures on A, having
support contained in A(t). Each endowment control W is identified with the rela-
xed control ey, €E, where ewy, is the point measure concentrated at W(t) € A(t).
T, is the final interval [t,—r.t,]. Finally, N represents the relaxed hereditary diffe-

rential system.
With this notation in mind, let us make now a couple of definitions.

Definition 1: g(U,M(®),1):= _[ g(Uy, w,t) M(t) dit
AD
This only says that responsible for the intertemporal course of U are exclusively
the consequences of the controls following t,.

Definftion 2: If for each neighborhood L of U° in K"[t,—.t,] there is a neigh-
borhood Q of Y, in D™[-r,0] such that for each YeQ there is a trajectory UeL of
N wi.}h Y=U, then Y,eD™”[-,0] is said to be reachable at time t, with a trajecto-
ry U” of N.
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It is self-explanatory that if the initial position Y, is to be reachabile, it must be
hecause there is one atleast trajectory that can restore it.
Finally, assume that,

Assumption 1: t=k{M{): = J k{w) M(t) dw is measurable for each
Ag

ke K{Ag).

Time is assumed to be measurable in terms of the realtocations of the endow-
ments that are brought about by the controls. That is, time constitutes here ara-
tio scale (like 2 weight measure) rather than an interval scale (like temperature
measures) as is conventionally assumed. This assumption is important becau-
se it allows explicitly disequitibrium trading, which however may or may not take
place depending on whether r is zero.

Assumption 2: g:K" [-,0]xR™xT-R" is continuous in (Y,w) eK"[-r,0]xR"
and measurable inteT,
The analogue of this assumption in the Euclidean space is that the utility functi-
on is at least twice continuously differentiable. This assumption postulates also
that utility is measurable at any point in time. [t is the neoclassical concept of u-
tility as a strength—of-preferences indicator except that no ratio {(measurement)
properties are presumed, thus providing ordinal ranking (see e.g. Frisch (1964)
and Alt (1971)).

Assumption 3: q:R,xT-R, is such that for all UeK [to-1,t1] and weA,,

la(U, ,w,t)lﬁq("Ut"m,t), {teT).

According to this assumption, if the number of markets is infinite, equilibrium
restoration (in the final interval time T,) should be slower vis a vis the finite case.
Therefore, in Banach spaces, the instantaneous adjustment towards the equili-
brium is precluded even if adjustment is instantaneous in Euclidean spaces.

Assurnption 4: g is continuously Frechet differentiable in the first argu-
ment, the corresponding derivative A,9(Y,w.t) is continuous in (Y, w.t) and for all

weh,, [18,g(Y w, i< q(]|Y[|n,t), {teT), where qis as in assumption 3.

This assumption is rather technical, since it follows from assumptions 2 and 3.

Assumption 5: For a measurable ScT, for U eK"[te-r.t;], and ce F1(S),

there is a neighborhood L of OeR" such that Lcc(t) +cog(U’ A).Y, (teS).
This assumption states that any deviations from U® in T, are small, and remain
about it.
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Assumption 6: The trajectory U° of N reaches Yo,eD™*[-+,0] at time t;, and
there are u>0 and a neighborhood L of OeR" such that

Lc-U%(t)+co g(U?,A(t),t), (te[ti~r—u, t—r]).

Finally, it is assumed that Y, is reached precisely at t=t, and that any deviati-
ons from U° during t;—r are quickly corrected. Note that this assumption impo-
ses stability beforehand and can not be used to prove stability. It also places a
time constraint not only on the reachability of Y, but also on the deviations from
U° before the exhaustion of the memory.

Theoretical Propositions
The first result referes to the stability of the hereditary differential system.
Proposition 1: I assumptions 1-5 are true, then there are e>0 and a ne-

ighborhood L’ of OeR" such that for all U with Ilu—u L<e,
LUcc)+co g(UnLADY) (teS).

Proof: The norm ||U—U°|| is simply the infinite dimensional version of the
(square root of the) quadrartic-loss—-function form of the Liapunov function. in
Euclidean spaces, simple differentiation of this function would suffice to prove
stability. In Banach spaces, however, one has to assume additionaly that de-
viations for U% in T, are small, (assumption 5), because recall that in T, there is
no memory. Consequently, if deviations are S|zeable, «quadraticloss—function
behavior» may indeed return the system back to U°, but to a point close to Yy,
not to Y,. This is actually a sketch of the proof. The formal proof follows Colonius
(1982) and Warga (1972}, and is outlined in the Appendix.

Proposmoné' If assumption 6 and proposition 1 are true, then Y,(-r) is rea-
chable with U° at time t,—r and Y, is reachable with U attimet,.

Proof- If would—be deviations from U® in t,—r are small, or more precisely,
quickly corrected by quadratic-loss—function behavior, then Y, (-1) is reachable
exactly at the end of the interval t,—r along the lines of the previous proof. Note,
however, that previously we had to have assumption 5 because we were in T,.
Now that memory is present, the interaction between 1t and quadratic—loss—
function behavior suffice to keep any deviations from U? small and prove the
first part of proposition 6, namely that the system moves essentially along u°
during t,—r. The whole proposition states that such a movement is a prerequi-
site in order to reach Y, at t=t,: Arriving at Y,(-r) as fast as possible is a prere-
quisite for the deviation—controlling behavior in T, to get us at t=t, back not to
any point on U° but to Y, exactly by assumption 6. Note that proposition 1 esta-
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blishes stability but it does not say when: before t; oratt,? (Certainly not after t,
because U° has by definition a time horizon for up to t,.) It is for this comparison
and for technical reasons (that render the proof of proposition 2 easier), that we
need assumption 5 and proposition 1 behind proposition 2; otherwise, as-
sumption 6 would suffice for our purposes here. Again, these considerations
offer a sketch of the proof. The formal proof follows the mathematics of Colo-
nius (1982) and Warga (1972), and is summarized in the Appendix.

4. CONCLUDING REMARKS

One might argue that our reachability-and-stability result is of limited e-
mpirical importance, since it follows directly from assumption 6 given that the
system behaves in a quadratic-loss—function fashion: Our result is simply not
fal<ifiable in Popper’s sence: it is always true and hence, always false. Indeed, |
admit that this assumption is quite restrictive. | used it because that is as far as
my mathematics can get me. Yet, this does not impair the usefulness of the ap-
proach followed in general. A better mathematical economist than | would only
need to modify assumption 6 to get falsifiable and hence, empirically meaning-
ful statements. But, that is the point of my work: Once its conclusions have be-
come probabilistic, they will have formed a general theory of fixprice microeco-
nomics and a sound microfoundation of macroeconomics. It is from this point
of view that | think the work in hand deserves some attention.
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APPENDIX

Proof of Proposition 1: Consider L an n-simplex with vertices x,, x4, ..., X
Then there are MieE, i=0, 1, ..., n, with

%= c(t) +g (U M(V).t) (teS)
Also, g(U.Mi(t).t) is uniformly close to g (UP,M(t),t) for small lu—utl,. tn this

manner, there are e>0 such that for all U with HU—U°L<9 and for all te8 the
points g (l.}t .Mi(t),t) are equally well vertices of n—-simplices containing a neigh-
borhood L’ of OeR". The proof becomes compiete when one notes that convex
combinations of g (U, ,Mi(t).t) remaininco g (Ut ..A('t),t).
Proof of Proposition 2: According to proposition 1, a set H can be defined
soasforalle>0 '
H:={beR"b=U(t,—r) forsome UecK"[ty-1,t,] with
U =0t forte[tyr, ti—r—ul, luuU% <e
and l'.l|[t1 —r—ut,—r]eP, P beinganeighborhood

of l'J"|['r1 —r-ut,—r]eF] suchthatforaliU

with lu-U%l, <e andall ceP
clheco giUy, AM), Y (te[t,—r-ut, —r])}

forms a neighborhood of Y, {-r) in R". Also, according to Warga {1972), Uis a
trajectory of N reaching b by definition. In this manner, U° reaches Y, (-1) at time
t,—r. The reachability of Y, at time t, follows immediately by noting that the set

k={Y eD"[-r0}Y=U, forsomeUeK [to-r,t:] with
U®=U@) for teter, t—r-u], lu-u.<e,
and Uft,~r—ut,JeP, P beinganeighborhood of
U°i[t, —r—u,t1]eF;‘}
forms a neighborhoed of Y, in D™[-r,0].
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