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ABSTRACT

The structural method of inference is used to identify outlying sub-samples in a set
of samples with exponential error components. Models for location shift, scale change,
and combination of both are examined. The structural approach leads to the distribu-
tions of the slippage parameters for these modeis. Therefore, inference statements such
as interval estimates and hypothesis testing can be established.



1. INTRODUCTION

Slippage problems have been considered in the statistical literature by
employing non-parametric, classical parametric, and Bayesian techniques; see
Barnett and Lewis (1984) and references therein. Slippage problems can be
described as follows: Suppose we have a data set which can be divided into k
distinct sub-samples according to some characteristics. Alternatively, we may
have k random samples of sizes ny, Ny, ... , N, coming from a common family of
distributions, where at least one n,>1, r=1, 2, ... , k. The objective is to test
whether one or more of the samples have undergone slippage relative to the
others, by having a different location parameter, or a different scale parameter,
or both.

Slippage problems can be distinguished according to two classification
criteria:

a. Labelled - Unlabelled: If it is known in advance which samples are can-
didates for slippage, then we have a labelled slippage problem; otherwise we
have an unlabelled slippage problem. Most of the work found in the literature
concerning slippage tests deals with the unlabelled case. However, in the ma-
jority of cases there exists in advance some explicit or implicit information re-
garding the index of the potential samples, which are suspected to have un-
dergone slippage. Thus, the usually unlabelled problems often reduce to la-
belled ones.

b. Specified - Unspecified: if we specifically test for downward or upward
' slippage with respect to location, and shrinkage or inflation with respect to
scale, then we have a specified slippage problem. Most of the existing ap-
proaches must use different test statistics depending on the direction of slip-
page. This restricts these methods to one-sided alternative hypotheses.

In this paper we consider labelled and unspecified slippage problems for
exponential samples. -

2. DESCRIPTION OF THE PROBLEMS

Initially we combine all observations from the k sub-samples. Then, let y,,
Y2, ... , Yo be the combined observations from the non-slipped majority of the
samples. Also, let z, 2, ..., Zn be the combined observations from the suppos-
aedly slipped samples. Using this notation, the three slippage models can now
be given:
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Location Shifi: This model can be described with the equations

Yi=H+Oe ) i
=u+A+og i

1,2,....n
1,2,....m

Scale Change: In this model, it is assumed without loss of generality that
the observations have a location parameter equal to zero. Then, the model can
be formulated as

Vi= 0@ '

i 12, ...,N
z=vyog , i 2

1
1,

Location Shift and Scale Change: Combining the two previous models, we
can also consider the model

yl=u+oel ' |
—H+A+YOE | ]

1,2
1,2,....m

In the above models, the parameters p, 4 € R, and o, o € R, are the loca-
tion and scale parameters of the majority of the observations y;. Also, the pa-
rameters A\, A € R, and v, y € R, are the slippage location and scale parameters
of the possibly slipped observatlons z;. The random error components e;'s and
gj's are assumed to be independent and identically distributed according to the
standard exponential distribution Exp(1). That is,

f(e) de,=exp(-e)de;, e eR™, and

f(g) de; = exp(-g) dg;, g < R".

The structural method of inference (Fraser 1968, chapter 2, pages 49-74) is
employed to derive the distributions of the slippage parameters. Therefore, in-

terval estimates for A and y can be obtained. Tests for the hypotheses A=0and
Y = 1 can be based on these interval estimates.

3. LOCATION SHIFT MODEL

The location shift model can be expressed in structural form as
X=0eE

where X is a 3x(n+m) response matrix, © is a 3x3 transformation matrix, and E
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is a 3x(n+m) error matrix, such that

r 7t 1 0 O r 1
X={0" 1|, =0 1 0], and E=10 ¥
y’ z’ HL A O e’ ¢

with y =1[y; y2..¥al, 2 =[21 Z2...Zm],
and e =[e, e..e,), € =[eg) €..8)

Direct structural analysis yields the structural distribution of the parameters
given the data (Armenakis 1988, pages 67-78) as

g*(, A, 6/y,2) dpdi do = r_'m%?r:_—?ﬁ
(3.1)
. exp {—;[n(ym-—p.)+m(z(1,—?u—u)+sx]} 0')’("' —5 dudi do,

where y;, and 2z, are the first order statistics of the observations y; and z, re-
spectively, and

n m
i=1 (=]

Also, p < po = min {yu), Zny —A}, A € R, and o € R*. To find the distribution
of the slippage location parameter A, we need to integrate expression (3.1) with
respect to o and p. Integrating over ¢ we obtain that

g*(n, A7y, z) dpdr = nm (n+m-1) (n+m—2) SH™*2
(3-2)

~{r+m)
. [y —m+mizg -A-w+8, ] drdd

To integrate expression (3.2) over u, p<py, it is necessary to distinguish
between the cases gy =y and po = Zq) — A

Case 1. Let y, = yu, which also implies that Y)<Zm—A and therefore
A <25 — Y- Then, the structural distribution for the slippage location parameter
Ais given by ‘
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gi (\/y,2)dA =nm(n+m)” (n+m—2) SI*™2
3-3)

{m-m-—1)

Case 2: In this case let p, = z(y)—A, which also implies that 2y, —A < yy
and therefore z(y) — y(y) < A. Then, the structural distribution for the slippage lo-
cation parameter A is obtained as

gs (A/y, 2 dA =nm (n+m)” (n+m-2) SH™2
(3.4)

{r+m—1)

Using expressions (3.3) and (3.4), it can be shown that

+oo Zin—Yoy +o0
joanad=fg =anad+ [ganzd=
- - Z Y

n m

n+m n+m

which verifies the validity of the structural distribution for the parameter A.

The structural distribution of A can now be used to construct 100(1-a)%
interval estimates (A, Ay) for the parameter A.

Let X N and O _Mm
2 n+m 2 n+m

from the integration of expression (3.3) as

. Then the lower limit A, can be obtained

1'L
Joi oz ar=Z,

which gives
1

S Sx 2n mm-2 -
AM=2Zgh-yuy+ Fx - I‘—T\-[m] (3.5)
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Similarly, the upper limit A, can be derived from the integration of expres-
sion (3.4) as

frna dr= 3.
Ay

which yields

1
S |— 2m ~m-2
—_ _ x x
M=2Zm-Ym+ -+ nl_(n+m)ail

f <D _ and <2,
2 n+m n+m 2
equation (3.5). Also, in this case the upper limit A, can be obtained from the in-
tegration of expression (3.3) as

then the lower limit A, is again given by

Ay
[gi am2) ar=1-F,

which gives
1

_ _S_x §i 2n nm-2
Ay =2zm-Yo + m l:(n+m)(2—0'-):|

4. SCALE CHANGE MODEL

In the scale change model, it is assumed without loss of generality that the
location parameter of the data is zero. Then, the model is expressed in struc-
tural form as

X=0eE

where X is a 2x(n+m) response matrix, © is a 2x2 transformation matrix, and E
is a2x(n+m) error matrix, such that

X=[v 0]’ 9=[G 0].and E=|:°' 0]
0 z’ 0 Yo o ¢
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with ¥y =[yiVe...Val, 2 =[2125...24]
and e =[e;e;...0), £ =[e162...8m].

Applying the techniques of structural inference, we can obtain the structu-
ral distribution of the parameters (Armenakis 1988, pages 79-86) as

g (6,7/y.2)dody = W

S, C cy Ssym
exp[— - (1+ ,Yx )] T dody,

(4.1)

where

m
Sy = Zyi —NYy » C= Fn
=1
Zyi —NYy(y
=1

and y(y) and z,) are the first order statistics of the observations y; and Z, respec-
tively. Also, o € R* and v € R*. The distribution of the slippage scale parameter
Y is derived by integrating expression (4.1) over o, which yields

{n+m) CY dy _
T(MI(m) (1 Cx J“"’“ ymH

g (y/y.2=

2m \2m
lq(2m+2n 2m) 2 _@_&) 2
_ 2 2n m y d(—n—&)

- 2m on 2m+2n
(%) [1+2_m(29x_)] :
2nim vy

Thus, the random quantity %% is distributed according to an F distribu-

tion with 2m and 2n degrees of freedom, which gives the structural distribution
of the slippage scale parameter Y-
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5. LOCATION SHIFT AND SCALE CHANGE MODEL

This is the combination model, which can be expressed in structural form
as

X=0©OeE

where X is a 4x(n+m) response matrix, @ is a 4x4 transformation matrix, and Eis
a 4x(n+m) error matrix, such that

1! ol -1 0 0 O 1’ o’
LT o 1 0 ’
X= 0 1’ , 0= 0 ' and E= 0 1’1
y o u 0 o O e 0
ol zl ._0 u-'—l 0 w o’ 8’

with Y= VY2.--¥nl, Z=1[212...2q]
and e=[e e;...0,), & =[eqe...8m].

Structural analysis of this model yields the structural distribution of the pa-
rameters given the data (Armenakis 1988, pages 87-103) as

. - nm
g* (A 0 y/y, g dpdrdady = Fr—o— oy

. exp {—%[n(ym-u)+$(zm—x-p)+sx(1+CTX)]} : (5.1)

m-1 Hm=-2
Cx Sx dudA do dy,

,Ym+1 6n+m+1

where y(;) and z,, are the first order statistics of the observations y; and z, re-
spectively,
m
Sx = Zyl _ny“) ' and CX = ’=n1
=1
- Zyi -Nyu
=1



398 Antonis Armenakis

Also, p<ps = min{yn), 25 -A}, AeR, oceR*, and yeR". To find the distri-
butions of the slippage parameters A and Y, we need to integrate expression
(5.1) with respectto ¢ and p. Integrating over o, we obtain that

n-m-I(n+m).CY'.8%"™2
r(n—-1)-rm-fHym™

g*(mA,v/y,2dudrdy =
(5.2)

m c, | "™
. [n(yu) —”)+7(Z(1) —A—u)+8y (1+'Y—x)] dupda dy

To integrate expression (5.2) over p, p<p,, itis necessary to distinguish
between the cases , = y(,) and o = 24— A.

Case 1. Let o = y,), which also implies that y <z - A and therefore
A<2Zzy)—Y(). Then, the structural distribution for the slippage parameters A and y
is given by

n-m-I'(n+m-1).CF~'.gFm2 yn-t
r'(n—1)-r'(m-1) (ny+m) °

gy (A/y, 2)drdy =
(5.3)

(r-m-1)

where —o <)\ <z4,-y;) and yeR*. Integration of expression (5.3) over A yields

gl (r/y. 2 dy= —_ . g*[ty) /y, 2] df =

Y+m
5.9)
2m-2
I,me--2)+(2n—2) 2m-2\ 2 2m-2 ,
_ ny 2 2n-2 f 2 df
- ’ _ _ (2m—2)+(2n-2)
ny+m l.(2m2 2)_1..(2n2 2) ., 2m=2, Em2pena)
2n-2
—fyy = D=1 Cx
where f=1(y) = m1 Ty

Case 2: In this case let p, = z(;,— A, which also implies that z;, — A<yyand
therefore z(,)—y(1,< A. Then, the structural distribution for the slippage parame-
ters A and y is obtained as
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nmr(n+m-N)CY'SF™2 ™!
'(n—1)-I'(m-1) (ny+m) °

gz (A v/y, 2y dAdy =
(5.5)

—{n+m-1)

. [n'y?\.— nY(Z¢ —Y)+Sx ('Y+Cx)] didy,

where z,)-y1 <A<+ and veR™. Integration of expression (5.5) over A gives
that

gz (y/y,2)dy = . g*[f(y)/y,z]ldf =

ny+m
(5.6)
2m-2

I (2m—-2)+(2n-2) | 2m-2) 2 2m-2
__m 2 2n-2 f 2 df
- ' - — (2m—2)+(2n-2)

ny+m 1_(2m2 2)_F(2n2 2) . 2m-2 T2
2n—-2

in f=f(y) = n=1Cx

where again f = f(y) = o

Using expressions (5.3) and (5.5) and then expressions (5.4) and (5.6), we
have

_
[g" @ yly. 2 drdy =

—oo

{

oo | Z(yYip +eo
= I jg? (A v/y.2) dr+ J‘g2 (A v/y,2) dA|dy=
0 - Zm~Y

“+oo

= [ [gia/ya+g(/y.a]dy=1,
) L=

where the fact that the random quantity f has an F distribution with 2m-2 and
2n-2 degrees of freedom was used. Therefore, the validity of the structural dis-
tribution for the parameters A and v is verified. Thus, the following results are
obtained: the structural distribution for the location shift parameter A is given by
expressions (5.3) and (5.5) as a conditional distribution given . Also, the ran-
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dom quantity f has an F distribution with 2m—2 and 2n-2 degrees of freedom,
which gives the structural distribution for the scale change parameter .

- To construct interval estimates for the parameters A and v, the following
procedure is suggested. First derive an interval estimate for the scale change
parameter v, using the fact that f has an F distribution with 2m-2 and 2n-2 de-
grees of freedom. If the hypothesis y = 1 for the parameter y can not be reje-
cted, this implies that no slippage has occured with respect to scale. Then the
value y = 1 can be used in expressions (5.3) and (5.5) for further slippage te-
sting with respect to location. Otherwise, if the hypothesis y = 1 for the para-
meter vy is rejected, this implies that slippage with respect to scale has occu-
red. Then the maximum likelihood estimator ¥ can be used in expressions (5.3)

and (5.5) for further slippage testing with respect to location. The estimator Yis
obtained from the maximum likelihood estimation method by setting

3-Ing’[f(y)/y.2] _ 0
oY

where g’ [f(y) /y, 2] is the structural density of f(y). Then,

Cx,. m>2

The structural distribution of A can now be used to construct 100(1-a)%
interval estimates (A, Ay) for the parameter A . Let

1, if Hy: y=1 cannotberejected.

Yo=
Yoot Heoy=1 o rejected.
Consider the case where (10 __ Mo ( . Then the lower
2'ny,+m n'y0

limit A, can be obtained from the integration of expression (5. 3) as
AL
Jaiy=voly2n=F,

which gives
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S .
AL =24 Y +‘mi("(o +Cyx)-
(5.7)

1
Sy |-2-n-y°-l“(n+m—2)-C§"‘-73‘2 nHm-2
m |_ (nyo +m)-T(n—1)-T'(m-1)-c

Similarly, the upper limit Ay can be derived from the integration of expres-
sion (5.5) as .

+oo o
fazhy="0/y.2)dA=3
Ay 2

which yields

S
Ay=24-Yqy —'n—,Yx;('Yo +Cx)+

1.
Sy | 22m-T(n+m—2).CY!.yg2 |mm-2
Yo | (Yo +m)-T'(n—1)-I'(Mm~1)-o

i LYo _
2 nNye+m nyo +m
by equation (5.7). Also, in this case the upper limit Ay can be obtained from the
integration of expression (5.3) as

(—, then the lower limit A, is again given

Ay
J g y=1oly2)aA=1-3
which yields

S
Au=2Z4—Yq +—';.|X‘(Yo +Cx)—

' 1
Sx| 2-n-y, T(+m—2)-CF'-yg2 |mm-2
m L(nyo +m)-T'(n—-1)-T'(m-1)- (2 o)
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