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ABSTRACT

In this paper we present an alternative approach to the problem of multicoliinearity
stemming from Kalman'’s system theoretic approach on identification from noisy data,
and link it to the most frequently used in practice, when dealing with multicollinear data,
procedure of ridge regression. Especially we describe Kalman’'s scheme of identifica-
tion and discuss its use in the presence of multicollinearity and its association with ridge
regression.



1. MULTICOLLINEARITY AND RIDGE REGRESSION

Consider the general linear regression model
y=XB+¢& ) (1)

where y is a nx1 vector of cbservations, X a nxc design matrix, fa cx1 vector
of parameters to be estimated and £ a nx1 vector of disturbances with the fol-
lowing properties: £E(g)=0and Efee ) = o?1,.

The LS estimator is defined as

B=xx'xy | )

If the columns of Xare highly correlated, X'X becomes “nearly singular”; i.e.
X Xhas a wide eigenvalue spectrum. The consequences of such a situation
are that the LS estimates of £, are “unstable” in the sense that a small pertur-
bation of the design matrix X will produce large changes in 8, and in many

cases present incorrect signs.

Different approaches are suggested in the literature to remedy the prob-
lem of multicollinearity’. However, most of them either require extensive prior
information regarding the S vector and larger samples that are very unlikely to
be available to the data analyst or require him to reduce his informational de-
mands by considering only a subspace of the parameter space. The only te-
chnique that deals with the problem of multicollinearity by considering the ori-
ginal data set is ridge regression.

The technique of ridge regression, first proposed by Hoerl and Kennard
(1970) which has become a very popular tool among data analysts faced with
a high degree of multicollinearity in their data. By using a ridge estimator, one
hopes to both stabilize one’s estimates (lower the condition number of the
design matrix) and improve upon the squared error loss (mean square error
(MSE)) of the least squares (LS) estimator’. Both the stabilization of the esti-
mates of #and the dominance in MSE of the LS estimator gave rise to algo-
rithms in computing the biasing parameter A.

The first approach focuses on the numerical properties of the ridge re-
gression estimator by attempting to bring the system closer to an orthogonal
one, while the second approach emphasizes the statistical properties of the
ridge estimator and is closely linked to the James-Stein (1961) estimator. The
first approach offered the ridge trace algorithm suggested by Hoerl and Ken-
nard (1970), which consists of plotting the elements of the vector 3¢«) against

! See Maddala (1978) Chapter 10.
ZSee Appendix.
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4 to help choosing Ain a “stable region”. This algorithm has been extensively
used in empirical work®. The second approach provided several ridge algo-
rithms that can be classified in the following categories: i) algorithms that mi-
nimize the MSE function, such as those proposed by Goldstein and Smith
(1974), Hoerl, Kennard and Baldwin (1975), Obenchain (1975), and Hoerl and
Kennard (1976). ii) algorithms that have a Bayesian interpretation by assuming
a prior normal distribution centered at zero for the unknown parameter vector
B, such as those suggested by Lindley and Smith (1972) with a hierarchical
Bayesian procedure, Lawless and Wang (1976) and Dempster, Schatzoff and
Wermuth (1977) foliowing an empirical Bayesian procedure. iii) algorithms that
minimize the residual sum of squares subject to a constraint on the length of
the coefficient vector g, such as the one proposed by McDonald and Galarne-
au (1975) and Gunst and Mason (1977).

Both approaches give rise to stochastic estimators, when £ is also a fun-
ction of the random vector ) and not only of the nonstochastic design matrix X;
To see this, notice that the ridge trace depends on y as pointed out by Coniffe
and Stone (1973) who observed that the “stable region” of observed Bi(k)is

stochastic itself. Moreover, regarding the second class of ridge estimators no-
tice that the range of A values for which the ridge estimator dominates the LS
estimator in MSE depends on the unknown S8 as well as o7, the & resulting
from Bayesian procedures is the ratio of the sample variance to the variance of
the prior distribution and the 4 stemming from constrained least squares is
subject to a somehow arbitrary constraint. In order to make these algorithms
operational it is necessary to use estimates of 8 and o, which in turn depend
on y and thus make the resuiting estimators stochastic. A major drawback of
stochastic estimators is that it is impossible to determine analytically their sta-
tistical properties, and therefore one must resort to Monte Carlo studies®.
However, all the existing solutions to the problem of multicollinearity take
for granted the existence of only one linear relationship in the data, i.e. the one
between y and the X’s. For noise” free data this approach is correct since the
design matrix X is of full column rank. If, on the other hand, the variables in X
are also subject to noise contamination the assumption of existence of a single
linear relationship within the data may be incorrect and in this case the prob-
lem will not be the one of multicollinearity and how to get stable estimates, but
rather how to detect the number of linear relationships admitted by the data
and how to reexamine the modelling process. Following this line of inquiry we

3 See for example Watson and White (1976), Mahajan, Jain and Bergier (1977),
Kvalseth (1979), Lee (1980), Erickson (1981).

* Most of the references provided above in the identification of ridge algorithms
contain extensive Monte Carlo simulations.

° We interpret noise in a broad sense, i.e. not only as round-off errors and aggre-
gation errors, but even as any causal or random factor affecting the realisation of the va-
riables in the design matrix X which can not be modelled.
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need to identify whether there exists a single or more than one linear relation-
ships in the data set under examination. The system theory literature provides
us with an exact mathematical result to deal with our problem, although the
motivation for this result comes from a different line of research and is pre-
sented next.

2. KALMAN'S APPROACH TO IDENTIFICATION

Kalman's approach to identification from real data influenced by system
theory deals with the following issue. Consider a (sample or population) co-
variance matrix X for ¢ variables x;, x», ..., X.. In case these variables are noise
free® they are linked by m linear relations if and only if there exists a matrix B of
rank m such that

B =0 ' (3)

Notice that in order to solve the indeterminancy in (3) the matrix 8 has to
be normalized in one of the following ways: either make any arbitrary element
(usually the first one) of every column of B equal to 1 or make the length of
each column of B equalto 1.

In case each variable x;, /= 1, ..., ¢ has some unknown amount of noise in
it we can write

xX;=xX;+v, f=1,..¢ (4)
where hat denotes the exact values and v the noise. It is assumed that the

noise variables are zero-mean, independent of one another as well as of the
X;'s. Itis also assument that the linear relations link the noise free part of the

variables. The latter assumption gives
B3 =0 (5)
while the former together with (4) give

s=5+V (6)

S As usually assumed in the linear regression setting for the variables in the design
matrix X
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where V > 07 and diagonal, and X > IV > 0. As Kalman (1982a) observed I/
has to be diagonal in order to be consistent with the hypothesis that noise va-
riables should not be modelable.

Given X > 0, since the x;’s are well defined we have a well posed mathe-
matical problem, namely: given X find 8,3 and V such that 8 3 = 0,%>0
and symmetric and V/ > 0 and diagonal. Kalman (1982a) shows the existence
of such a solution (p. 175), although it might not be unique. However, this
problem admits something unique, an invariant, namely the maximum rank of
B. Using the following definition we get:

Definition: The corank of a square nxn matrix A is defined as
corank(A) = n-rank(A) (7
Then,
maxrank(B) = maxcorank ( i) = maxcorank(Z) =m (8)

Using (8) the problem of studying multicollinearity reduces to the study of the
maxtmally singular matrix X. Kalman (1982b) proves that /77 = 1 (p. 149), name-
ly the data admit only one linear relationship, if and only if = is inverse posi-
tive, which means that all entries of ™' are strictly positive or this can be achie-
ved by a suitable choice of sign changes in the definition of the variables X1, X,
..-» X We give next a slightly different proof of this Theorem.

Theorem.: m = 1, ifand only if, ' has strictly positive elements, possibly
after sign changes of rows and corresponding columns.

Proof- i) In order (5) to hold, £ £ = 0 must hold, or equivalentiy by (6) ( /-
s'v) B = 0. It follows then that Bis an eigenvector of ' I/ with correspon-
ding eigenvalue equal to one. By Frobenius Theorem (Gantmacher (1959), p.
47) for nonegative matrices, we get that Bis strictly positive, since ex hypothe-
sis3'is striclty positive and I/ is a covariance matrix. So, Blies in the cone of
= ' and so does by (6) the null space of £ . Hence, all elements of this null spa-
ce lie in the strictly positive or negative orthnat. Consequently, this null space
can be at most one dimensional, and thus m = 1.

ii} If not all elements of &' have compatible signs, then there exist two
columns i and j that they do not lie in the same orthant. So, in the cone of these
two columns there is a vector Bwith a zero element. But, by Hakim et al (1976,
p. 14, Coroliaire 2.4) this implies that m > 2 which contradicts the hypothesis m
=1,

" The symbol “ >0 " means a positive definite square matrix.
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We prove next some sufficient conditions for 2 ! to be inverse positive in
the general linear regression setting. Define the multivariable Z= [y| X] and 2
be the covariance matrix of Z.

Lemma 1. Any nonsingular covariance matrix Z with all nonpositive cross
covariance terms is inverse positive.

Proof- Corollary 2 (page 85) in Varga (1962) states that: if A is a real,
symmetric and nonsingular nxn irreducible matrix, where q;;) <0 for all 7=/,
the A~' > 0 (inverse positive) if and only if Ais positive definite. It can be easily
then seen that since X is a real covariance matrix it is automatically symmetric,
nonsingular and positive definite. Moreover, ex hypothesis all its off-diagonal
terms are nonpositive. Thus, the result follows trivially from Varga’s Corollary.

Lemma 2: lfthe columns of Xare orthogonal, then Z is inverse positive.

Proof- Because all the columns of Xare orthogonal the submatrix Z, is di-
agonal with positive elements. Moreover, all the cross covariances of y with the
columns of Xcan be made negative with an appropriate variable sign change.
As long as  is positive definite, using Lemma 1 we get the resuit.

Notice that Lemma 2 gives a formal justification for using linear regression
(only one linear relationship between y and X) when the columns of Xare or-
thogonal (as assumed in the linear regression context but rarely satisfied in
practice).

It remains to show the connection between ridge regression and the in-
variant corank of =, m (Z). Consider the mapping

k—>m(E+kl) (9}

for = being a constant, symmetric, positive definite covariance matrix and k
varying on (0, ®). Since m (/) = ¢ (the identity matrix admits c linear relations),
itis obvious that

M em(Z+kl)=c+ 1 (10)

and hence intuitively clear that m (Z + /) is a monotonic function of 4 Adding
k to the diagonal elements of X X in ridge regression is like adding noise in 2,
and hence in =. Then if X is near the boundary where m changes from 1to2a
small value of kis enough to bring the change about. Butif m (Z+k/) = 2we
should abandon the prejudice of looking for a single linear relationship in the
data and should either search for a simultaneous equations model where we
would model the relationship between our xvariables, or drop some of the x’s.
Moreover, this approach provides a way of checking the admissibility of A ob-
tained by aridge algorithm. Let &* be the & that makes m. (Z+ /) = 2. Then,
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the optimal kin any ridge algorithm should lie in the interval (0, &*) in order to
be meaningful. The problem arises because all the existing ridge algorithms
are derived in order to remedy the statistical problems of the LS estimator and
they do not take into consideration the nature of the linear relatlons embedded
in the data.

3. APPLICATIONS

We illustrate our point regarding muiticollinearity and ridge regression
with two examples from the literature. In the two applications we discusse a
heuristic explanation of the merits of Kalman’s approach to identification when
dealing with multicollinear data and when applying the technique of ridge re-
gression by using both the = and the AR matnces The first application ap-
pears in Neter, Wasserman and Kutner (1985) The data covariance matrix =
is given next, with an appropriate sign change for X, along with ', which is in-
verse positive.

252331 -242923 -8.3867 -21.6295
—242923 274012 16164 234704
—8.3867 16164 133017 26527
—216295 234704 26527 26.0731

317148 264194 166189 08367
1 _ | 264194 221687 138535 05515
166189 138535 87858 04220
08367 05515 04220 0.1931

The columns of the two matrices correspond to the variables tricepts skinfold
thickness, thigh circumferences, midarm clrcumferences (expanatory vari-
ables) and body fat (dependent variable). Normalizing 5, or in other words
compute all direct and reverse regressions we get

10000 10000 1.0000 1.0000
0.8330 0.8391 0.8336 0.6591
05240 05244 05287 05044
00264 0.0209 00254 02308

AR=

® Table 11.2, p. 385.
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which indicates that the solution space is a very thin tetraedron, and with some
noise it will become a triedron and thus one parameter will not be identifiable
simply by a linear model. Adding 4 = .0978 along the dlagonai elements of 2,
we get

44898 36802 23316 01745
36802 31746 19205 -0.0001
23316 19205 12876 00744
01745 -0.0001 0.0744 01757

which is not inverse positive. However, the ridge solution suggested in Neter,
Wasserman and Kutner (1985) based on the examination of the ridge trace
and the variance inflation factor gives a value for & = .02°, which fies within the
interval (0, 0.0978) and therefore is an admissible biasing parameter. With &£ =
.02 the condition number of the inverse of XX improves by 56 percent (from
1085.78 to 483.11) and there is a small improvement in the MSE as well. in this
application we are in an “optimal situation”. The data admit just one linear re-
lationship (or in other words we face the classical problem of multicollinearity)
and the ridge solution improves the stability of the estimated coefficients and
lies at the same time within the admissible region.

In the next application the data covariance matrix is not inverse positive
and we show how to practically detect additional linear relationships'®. As
previously stated, the normalized columns of =™ give all the regression ve-
ctors (AR) of Z. It can be shown that the /” AR is the LS estimate of the coeffi-
~ cients when the /% vanable is assumed noisy and all others noise free, or to
put it differently the /% AR is the normalized eigenvector corresponding to the
zero eigenvalue of

V=3-D (11)

where D = diag (0, . ..} and d’is such that Vis singular and positive
semidefinite. Kalman (1982a) shows that o’ is the reciprocal of the / d|agonal
element of ' and can be interpreted as an upper bound on the noise varian-
ce of the /' variable.

When 3 is inverse positive, the upper and lower bounds of every coeffi-
cient will have the same sign, and the solution space will be bounded, other-
wise it is not. However, we can use this information in detecting the additional

? We also computed the Lawless and Wang (1976) and the Hoerl, Kennard and
Baldwin (1975) algorithms which give values for & within the admissible range.
Remember that they do not exist precise mathematicai resuits for detecting the
exact number of linear relationships in an arbitrary data covariance matrix.
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linear relations existing in the data. This can be best demonstrated using an
application given in Tinter (1946).
The data covariance matrix Z is given next

(12126 05362 0.0876 -0.0727 0.5320)
05362 05576 02071 00750 02200
S=| 00876 02071 01064 0.0545 00303 |x 10°
—0.0727 0.0750 0.0545 00500 -0.0385
_ 05320 02200 00303 -00385 02407

The variables are prices paid to farmers, national income, agricultural
production, a time trend and prices paid to farmers respectively. The upper
bounds on the noise variances are

(27.7682 32.8249 10.3431 0 6.2635)

where d s set to zero because the third variable is a time trend and is as-
sumed to be noise free.
The AR matrix is given by

(10000 10000 10000  1.0000)
| -0.83451 —2.4516 -36422 -0.0200
02994 31601 89674 0.0837
01770 16003 -32736 -0.4019
(—19044 -01101 -05323 -2.3279,

AR

i

The third row is the only one presenting a sign descrepancy. If we manage to
find a diagonal noise covariance matrix such that the (4, 2) (or the (4, 1)) ele-
ment could be made zero, then this would reveal an additional linear relation
among the first three and the last variable. Consider the following diagonal
matrix G = diag (0, 0, 0, 6.19). Notice that def (£, — D) = 0, where X, is the
cofactor of the (4, 2) element of . Moreover notice that g, = 6.19 is less than
ds = 6.26, and hence it provides a feasible solution. Computing the AR matrix
ofthe  — S ‘'matrix, where S '= dlag (0, 0, 0, 0, 6.19) yields
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(10000 10000 10000  10000)
~0.0246 -05081 -01989 -0.0200
AR=| 00868 07012 05224 00837
-0.3936 00000 -05437 -04019
|-2.3218 -18827 -22392 -2.3279)

which does not present any sign discrepancy among its rows and reveals a
linear relation between the first three and the last variables. We can now use
this information in deciding how to model or more generally how to approach
the question we study with data set in hand.

4. CONCLUDING REMARKS

When we have noisy data (like in most empirical applications) the uncer-
tainty in the data will be inherited by the model. Most of the times it is covered
behind some ad hoc modeling mechanism but it is not eliminated. The situa-
tion becomes more difficult in the presence of muiticollinearity, since the de-
gree of the uncertainty increases by the presence of underlying linear relation-
ships in the design matrix X (see the second example). A widely used proce-
dure to deal with this problem is ridge regression with interesting numerical
and statistical features. However, as we showed with the example above it
solves problems up to a point, but once the data with the addition of some
noise admit more than one linear relationships it is pure prejudice to continue
using the linear model and try to improve the solution by the use of ridge re-
gression. The real solution lies in the better understanding of our data, and the
questions we expect to answer with the particular data set in hand. Ridge re-
gression offers in many situations a great potential but it is not a panacea and
certainly can not substitute the modelling process.
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APPENDIX

To correct the problem of the ill-conditioning of XX, Hoerl and Kennard
(1970) proposed the ridge estimator

B(k):(x;\'+k)J’xy, k>0 (12)

Adding the constant 4 to the diagonal elements of X X before inverting, ac-
counts to increasing each eigenvalue of X X by 4, since the ridge estimator
can be rewritten as:

B =(C(N+klJCI'XY, C°'XXC=A CC=1/ (13)

where A = diag(A;, A, ..., AJ, A, 7 = 1, ...c being the eigenvalues of X X, and C
be the matrix of the corresponding orthonormal eigenvectors.

To see that the ridge estimator is more stable than ﬁ we note that the

condition number of the matrix being inverted in (11) is decreased. The condi-
tion number of a matrix is a measure of ill-conditioning and is defined as

CN(A) = i—@% (14)

where A. (A) and A, (A) denote the largest and smallest eigenvalues of the
matrix A respectively. Large values of C N (4} imply that A is ili-conditioned.
Since,

A+ kA,
Ak, (19)
for & > 0, the ridge estimator in (11) is relieving the ill-conditioning problem of
XX :
The other important property of the ridge estimator is the “ridge existence
theorem”. This theorem asserts that for a fixed parameter vector 8, there ex-

ists a value & depending on £,, such that the MSE of B (%) is smaller than the
MSE of ﬁ (see Theorem 4.3, p. 62, Hoerl and Kennard (1970)).
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