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ABSTRACT

The problem of testing a set of data for outliers is not new in statistics. Methods
have been proposed for the general linear model. These methods are not appropriate for
detecting outliers in time series data. However, it seems to be particularly important to be
able to detect outliers in time series, especially if these data are to be used for forecast-
ing purposes.

In this paper certain tests for the presence of outliers are described. These tests are
then applied, using simulation methods, to several ARIMA models, and resuits are com-
pared. An illustration of the procedure is given with published U. K. economic data.



1. INTRODUCTION

In recent years much attention has been given to the detection of outliers
in data arising in various areas of statistics. An extensive survey of the various
techniques for detecting outliers has been done by Barnett and Lewis, 1978
and D. M. Hawkins, 1980. In general these techniques are applicable to data
comprising observations which are supposed to be independent and identi-
cally distributed.

Such methods are not, however, appropriate for examining outliers which
may arise in time series analysis, because typical data sets encountered in
practice will be strongly correlated and this means that not only the successive
observations are autocorrelated, but also strong seasonal effects occur. In time
series, an outlier is not necessarily an extreme value, but it can be a change or a
break in the pattern of the series. However, although occasional outliers are un-
likely to affect the estimation procedures, provided they are few in number and
the sample size is sufficiently large, they have a disproportionate effect on the
forecasts, particularly when an irregular observation or a recording error lies in
a very near the end of the sample time observation (E. Giziaki, 1993). Thus the
detection of outliers in time series data is important in forecasting work, such as
in many applications of time series analysis in business and economics.

-~ An examination of the problem of outliers for non-seasonal autoregressive
time series processes has been made by A. J. Fox, 1972. Fox proposed two
tests for detecting errors in observations in autoregressive time series, based
on the principles of likelihood ratio and direct evaluation of the suspected out-
lier. However, Fox did not consider moving average, mixed and seasonal ARMA
models. He used simulations to compare his test with a test based on arandom
sample procedure, which assumes that the time series observations are inde-
pendently and identically normally distributed.

In this paper we extend Fox's approach to cover several other time series
models. To this end estimates of the value of the suspected outlier and its vari-
ance are presented. A third criterion based on the one step ahead forecast error
is included. The three tests are then compared using simulations and the re-
sults are commented.

In Section 4 a set of U. K. economic data (The Iron and Steel Production
Index) was examined for the presence of outliers using the tests described in
Section 2. The presence of outliers was tested in particular data points and an
economic interpretation was then suggested for the anomalous behaviour of
the series.

The tests considered rely on certain results obtained which are shown in

the Appendix.
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2. DESCRIPTION OF TESTS
2. 1. General

We assume that a given time series
z2'= (21! Zy, ..., Zn)

is generated by a model of the seasonal autoregressive mtegrated moving ave-
rage (ARIMA) class, i.e.

@(B) ©(B°% V' V,° 2z, = 6(B) O(B") a, (1)
or P(B) ®(B%) w; = 6(B) O(B°) &, @

This is a general or that covers seasonal and non-seasonal models. In (1)
{a;} denotes a sequence of uncorrelated random variables, normally distribu-
ted with zero mean and common variance @,’. B is the backward shift operator,
such that Bz, = z,.,. V and V, denote the ordinary and seasonal difference ope-
rators, whilst ¢, @, 8, © are polynomials in real coefficients of degree p, P, q, Q
respectively. The sequence z is known as a multiplicative ARIMA (p, d, q) (P, D,
Q)s process (Box and Jenkins, 1976 - K. Giziakis, 1979).

The observations are such that:

. =W, for t=zr
"l=w,+8 for t=r

We test whether x, for a particular value of r is an outlier, i.e. a spurious or
aberrant observation (AO). Thus for t = r there is an outlier, if 8 is non-zero, and
our testing hypothesis is as foliows:

against : Ha: & #0 ' 3
Ifthere is an outlier, x; is adjusted accordingly.

It is here assumed that any trend and seasonality in {z} have been re-
moved by differencing, and that the process {w;} is stationary. The order of the
process is also assumed known.

The covariance matrix of the process (wi} is 0.2 M,, where M, is an nxn
Laurent matrix expressed in terms of the parameters of the model (Durbin,
1959).
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2.2. Test| (Likelihood ratio)

This involves maximization of the likelihood under the two hypotheses
stated in (3) and (as shown in the Appendix) leads to the likelihood ratio statis-

tic:
_ (x-8) 8 (x-5)
N= — (4)
x'M, x
where
M,~', M, arethe estimates ofthe inverses of M, under the two
hypotheses and

5=3 (0,0,0....0,1,0,0....0)  isthe estimate of the displacement in the ™
observation.

A result which proved computationally useful here is that the inverse covariance
matrix of a stationary autoregressive moving average process of order (p, Q) is
given approximately by the covariance matrix of an autoregressive moving av-
erage of order (q,p). (Shaman, 1975 — Shaman, 1976 — Godolphin, 1980).

Differentation of the log likelihood, formed under the alternative hypothe-
sis, with respect to 8 provides an estimate of 5. These estimates and the vari-
ance of & for certain ARIMA models are presented in the Appendix. A detailed
coverage including more ARIMA models can be found in E. Giziaki, 1987.

Following standard procedures (as for example described in Kendall and
Stuart, 1968, Vol. I, Ch. 24) when M, is known, a linear transformation could be
applied to {x;} to vield a set of uncorrelated variables, and we obtain under the
H,:

A)'~1+ _r-x—l_k Fi,nx (5)

where k is the number of parameters to be estimated and n is the number of ob-
servations. Since M, is usually unknown, Fox verified, using simulated series
that the F- distribution provides a good approximation even in the case of un-
known M, (Fox, 1972).

Under the alternative hypothesis (\)"' has a non-central t-distribution
(Kendall and Stuart, op. cit, pp. 254-255). An approximation of the non-central t
distribution is given by Scheffe, 1959 (Hays, 1981). This approximation pro-
vides the cumulative probability given the non-central distribution with parame-
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ters g and ¢, where g is the degrees of freedom and c the non-centrality pa-
rameter. The expression is presented in the Appendix‘.

2.3 Testl] (O test)

Fox also considered the &-test, which is simpler than the likelihood ratio
method. This is denoted by A" and it is

A = ) 6

5 (6)

Assuming that 3 is a linear combination of normally distributed variables,

as shown in the examples given in the Appendix, this statistic has a t-

distribution. Its standard error has been found (using spectral methods) for

simple non-seasonal autoregressive processes {(Grenander and Rosenblatt,

1966, p. 83). An alternative derivation is given in the Appendix, which can easily
be extended to seasonal models too.

2.4. Testll (forecasterror)

Another possible test is the cne that uses the one-step ahead forecast er-
ror, i.e.

e(1) = Zee1— 2, (1) = @4y (7)

where Z, (1) is the forecast made at time t for the period t+1.

If the model is correct and the true parameter values are used these fore-
cast errors must be uncorrelated for a minimum mean square error forecast. In
practice, when the model for a series must be identified and the parameters es-
timated, the e (1)'s will in general be autocorrelated.

If the model is adequate, it is possible to show that

a, =2, +o[ﬁ] ®)

' The approximation given by Scheffe, 1959 is based upon the normal distribution.
The approximation is found by use of the expression:

Pr(tgc<y) = Pr{z<(y-c) (1 +y?/29)"%}

where z is a standard normal variable (Hays, 1981).
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where 4,are the estimated residuals and as the series length increases,
a, become close to the white noise a, (Box and Jenkins, 1976, p. 289).

Hence, if the sample to which an adequate model is fit is moderately large
and we build our forecasts from the beginning of the series, at time t+1, where t
is large, the a,’s will approach the white noise a;, which is a random series dis-

tributed normally with mean 0 and variance ol

The variance of the one-step ahead forecast error is an underestimate of
the true variance, since it assumes that the coefficients of the forecasting model
are known, where as in fact they must be estimated leading to a corresponding
decrease in accuracy in the resuiting forecasts. However, for moderately long
series, this factor will be of relative small importance (Newbold and Granger,
1977, pp. 155,91-93, 161).

This test criterion is:

a | ©)

and it is assumed to have a t-distribution. o, is estimated from the residuals. In
the introduction, it was pointed out that in the time series analysis context, an
outlier is not always an extreme value as it happens in other areas of statistics.
Therefore even a value, as extreme as two standard deviations, should be ex-
amined carefully. In the next section, where the power of the tests is consid-
ered, the effectiveness of this test is discussed.

3. COMPARISON OF THE TESTS

Simulated series were used to compare the power of the three tests. The
models employed are AR(2), MA(1) and SAR (1,0,0) (1,0,0)+..

Twenty series of 100 observations each were employed for each one of the
sets of the parameter values tried. The evaluation of the power considered was
for values of &, the error in the 1-th observation, ranging from + %0, to + 3¢, at
the 5% level of significance.

Test | and test || are asymptomatically equivalent. Test | and |l are more
powerful than test Il in all the cases examined.

Test | is less powerful in the case of a MA(1) model than it is the same test
in the case of an AR(2) or a seasonal autoregressive model. This loss in power
may be due to the computational formula of 3 for this model. That is, the weight
given to each observation depends on the position of the outlier and the vari-
ance of 3 is also dependent on the position of the outlying observation. The
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same is not true in the case of an autoregressive model. in the case of MA(1),
test lll approaches test |.

In seasonal autoregressive models, there is a great loss in power of test lll
as compared to test |, which is very powerful. Test |ll is less powerfull than the
other two tests for all the models considered, but in many practical situations
this relatively simple procedure may well prove adequate.

4. AN APPLICATION: U. K. IRON AND STEEL PRODUCTION INDEX FOR 1952-1979

A plot of the 112 quarterly observations of this series appears in figure 1.
The model which appeared to fit the data best was (0,1,0) (0,1,1)4i.e.

(1-B) (1-B% z, = (1-0B% 3,
or w, = (1-0B% a, (10)

The parameters were estimated to be © = 0.9266 and o, = 5.20.

Observations at times 78, 82 and 89 were tested for the presence of out-
liers. The reason for selecting these observations is explained at the end of this
section. Observations at times 94 and 110 were also considered since test I
has values of three standard deviations and above. Observations numbered
86, 93 and 105 were also examined. ‘

Estimates of 5 and its sampling variance were first obtained from the rela-
tionships:

D B=x+ 3 O [Xa +Xrvak] (11)
k=1

where the x; are as before the observed (differenced) observations and

i = max [r—T.n—r]

4" 4

(i) var 3 = (1-02 + ©%) & (12)
—min |DorH1 T
wherev—mln[—-—4 ,4]

and n = number of observations employed in this estimation.

The hypothesis & = 0 was tested against its alternative at various levels of
significance, using the three test procedures described earlier on the differen-
ced stationary series x;.
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Figure 1. U. K. Iron and Steel Production Index for 1952-1979.
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The test results were as under:

Observation Test/ Testll Test i/

number
78 (1971, 1) 1.36 —6.0 —2.11
82 (1972, 1) 1.37 8.0 2.63
86 (1973, Il) 1.23 —2.21 -1.31
89 (1974, 1) 1.82 -9.2 -1.92
93 (1975, 1) 1.16 2.2 0.61
94 (1975, II) 1.68 | -8.9 —4.28

110 (1979, 1) 1.38 7.39 2.9

The corresponding critical values of the F and t-statistics indicated outliers
at points 78, 82 and 89, except for the weaker test lli which showed a marginal
significance at observation 78 and no statistical significance at the observation
89. Observations 86 and 93 are of marginal significance for test I, and of no
statistical significance for test ll.

The prolonged coal strike in early 1972, and the miners’' overtime ban in
late 1973 followed by the “three-day week” and a further miners’ strike in early
1974 are factors underlying the unusal observations numbered 78, 82 and 89.
Tests criteria | and Il have indicated presence of outliers at the particular points.

The later outliers may suggest a change in the level of the series after early
1975, when a general decline in the industry began to be apparent. However
the testing criteria presented in this paper are not appropriate for testing
changes in the level of a time series (E. Giziaki, 1994).

The seasonal nature of the series tends to obscure the detection of points
where changes seem to be occuring, but the test procedure outlined above, in
conjunction with Box-Jenkins methodology, may be useful in the location of
such changes.

5. CONCLUDING REMARKS

Since it may be difficult to detect aberrant observations in a time series
merely by inspecting a plot of the data, forecasting work is often hazardous.
The tests for outliers examined can therefore be of practical use in detecting
anomalies. The criteria developed herewith test whether a particular observa-
tions is an outlier or not. For many purposes the relative simple test lil descri-
bed above will prove adequate.
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APPENDIX

1. Likelihood ralio test

Assuming normality for a's, the estimated likelihood under the two hy-
potheses givenin (3) is:

1 ’ Ny -
L, = - 1 — exp{——A—Z-x M, ’x} (13)
(275,%)"2 M| 26,
and
1 1 ~ '~ -1 ~
La= — — exp{— —— (x—8)'M, (x—S)} (14)
(2n032)"’2|Mn| 26,

When M, is known, a linear transformation to {x;}, which gives a set of un-
correlated random variables, can be used and the likelihood ratio reduces to

~ 12
2yn/2
Ve M,

— (Ga

- ~ 112
A D n,2
(5.2"2|M,

_ Since & affects only one observation, the effect on the value of the parame-
ters will be negligible (E. Giziaki, 1987). Hence

~

Mn

~

M,| and

=

(15)

yen _ (x= 88" (x~)
' x'M,,"'x

For Known M,, (15) is distributed as in (5). Since My is usually unknown, the
possibility of using the distribution based on known M, as an approximation to
the true distribution was examined. The comparison has shown that there were
no notable differences in the values of the criterion based on known M, and cri-
terion (15) (Fox, 1972).

2. Estimation of & and its standard error

Differentiation of the log likelihood with respect to & in (14) provides an esti-
mate of & and hence its variance. In the following, we examine particular cases.
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AR(1)

If {x} is an AR(1) process, then M, in (14) will be approximately equal to
the covariance matrix of an MA(1) process (Shaman, 1975). The differentiation
then yields '

(% = 8) (1+0%) — @ (Xpy + %) =0

Q
1+0

from which 3= X — 5 {Xre1 + Xeq)

which may be written as

1

S =
1+ @2

(ar—pa,q)

c,’

1+¢2

Hence var(g) =

In a similar fashion by employihg the M, approximation for ARMA models
(Shaman, 1975, 1976 — Godolphin, 1980) we may obtain the following results
(reference E. Giziaki, 1987):

AR(2)
3 1-9,) P
8=x,——&—2—-x +X_g) (X, 0 + X
1+(P12+(P22( r+1 r—1/ 1+(P12+(P22( r+2 T 2)
~ 2
Var(3)= ——2
1+94" +9,
SAR(1,0,0)(1,0,0)
o 1+®?) oD
5= x ——2+Ps (Xpq +X,_y)+ 2 (X5 +Xrro )+
1+oD) (1 d7) T gty gy S TR
9Ps ( D5 (1+9%)
X +X_g4)— (Xpos +X,_c)
(1+<|>2)(1+‘I>32)\ r+S+1 r-S-1 (1+<p2)(1+<1>32) +S —~S
~ 2
Var(3) = Oa

(1+92)(1+®g>)
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MA(1)
~ k E
6=x+ 29' (X1 + Xes)
=

Var(3)~(1-6°+ 6™ 0.2 for v1
where v =min {n—r+1,r}
andvar(3)~(1-6%9 0,2 for v=1

ARMA(1, 1)

2 1-09) (0—9) ~= gt
d=x+ ( 0" (G4 + X
Xy 1- g2 —2¢0 21, (Xr+i + %)

where k = max {{r-1), (n-r)}
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