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ABSTRACT

In this paper we consider the comparison of alternative size corrections ofthe tand
F tests in the normal linear model with unknown error covariance matrix. Rothenberg
(1984b) has derived corrected critical values for the F test from a chi-square Edgeworth
approximation. Similar corrected critical values for the t test can be derived from a nor-
mat Edgeworth approximation. Alternative critical values can be obtained by using Ed-
geworth approximations based on the F ort distributions respectively. These corrections
are locally exact, i.e. they reduce to the exact critical values when the error covariance
matrix is known up to a multiplicative factor. Moreover, instead of correcting the critical
values, we may use a Cornish-Fisher correction of the test statistic. Thus we avoid the
problem of negative *probabilities® in the taits of an Edgeworth "distribution”. The relative
performance of these corrections is examined in the linear regression model with hete-
roscedastic errors. A simulation study supports the theoretical considerations in favour
of the locally exact Cornish-Fisher corrections. Due to their moderate computational re-
quirements and the simpilicity of their use, the Cornish-Fisher corrections can be a usefid
tool in applied statistical and econometric work.
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1. INTRODUCTION

When the normal linear regression model with nonscalar error covariance
matrix is estimated by generalized least squares (GLS), any linear hypothesis is
usually tested by the conventional F {(or t) test, with the implicit assumption that
the sample size is large enough to permit the chi-square (or normal) approxi-
mation. In finite samples, however, there is considerable discrepancy between
the actual and the nominal size which night lead to erroneous inferences and to
incorrect structural specification. Also, the well-known conflict among the clas-
sical testing procedures is mainly due to the fact that the Wald, likelihood ratio,
and Lagrange multiplier tests have different sizes. The size correction should
be adequate to eliminate most of the probability of conflict, as the differences
between the actual and nominal size are large compared with the differences in
power (see e.g. Rothenberg (1982), p. 529).

For a general class of models that includes most of the usual econometric
specifications, Rothenberg (1984b) has derived general formulae for the Edge-
worth corrected critical values for the Wald (F) test. Empirical evidence in favour
of these corrections has been brought up by Magee (1989), in the context of the
linear regression model with AR (1) errors. In both cases the Edgeworth expan-
sion used was in terms of the chi-square distribution. Using similar methods,
we may derive corrected critical values for the t test from a normal Edgeworth
expansion.

Instead of using the "asymptotic" form of the test it seems preferable to ma-
ke "degrees of freedom adjustments” and to derive expansions in terms of the F
(or t) distribution instead of the chi-square (or normal) distribution. Although
both approximations have an error of the same order of magnitude, the de-
grees of freedom adjustments seem to improve the approximation in finite sam-
ples.

The practice of using degrees of freedom adjustments in cases where only
asymptotic results are available, has been critisized on the grounds that there is
nothing in large sample asymptotic theory to justify these corrections (see, e.g.
Dhrymes (1969), p. 220). But, there is no reason to restrict ourselves to infor-
mation from the asymptotic method only. In small samples there are strong ar-
guments in favour of the degrees of freedom adjustments.

If the error covariance matrix is known up to a multiplicative factor, then the
degrees of freedom adjusted Wald test statistic is exactly distributed as an F
variable. When the covariance matrix is estimated from the data, then the exact
distribution is not known, and we switch to the asymptotic (without degrees of
freedom adjustments) test. It is quite surprising to note that the latter test is
more stringent than the former, i.e. the asymptotic test rejects the null hypo-
thesis more often than the exact test. This is against all intuition, since it implies
that, although we have introduced a new source of noise from the estimation of
the error covariance matrix, the concentration of the GLS estimator around the
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true values has increased. Furthermore, the differences between the two tests
are quite striking. Under realistic conditions, the acceptance region of the a-
symptotic test can be less than 50% of the acceptance region of the exact test
(see Magdalinos (1983), p. 138-140). The difference tends to zero as the sam-
ple size increases, but not as fast as one might expect, especially when the
number of the structural parameters is large.

Since the accuracy of an asymptotic approximation depends upon the na-
ture of the first term in the expansion, the situation is essentially the same when
refined asymptotic approximations are used. Thus, in the context of instrumen-
tal variables estimation, Kunimoto et al. (1983) and Morimune and Tsukuda
(1984) report some cases where the approximations based on degrees of free-
dom adjusted distributions perform better than the approximations based on
unadjusted distributions. This can only be explained by the fact that, when the
model is sufficiently simplified, the degrees of freedom adjusted approxima-
tions reduce to the (known) exact distribution. This instigated some alternative
approximations in terms of the t and F distributions (see Magdalinos (1985)).
The same idea can be extended in the context of the GLS estimation. Suppose
that in the normal linear regression model the error covariance matrix, up to a
muitiplicative factor, is known to belong to a ball of radius 3. An Edgeworth ap-
proximation is said to be locally exact if it reduces to the (known) exact distribu-
tion as 0.

In other words, there is a limitless number of possible approximations that
can be generated by changing the distribution function in terms of which the
approximation is made. The choice does not affect the order of magnitude of
the error term, but it is crucial for the small sample accuracy of the approxima-

_tion. The traditional choice of the limiting (normal or chi-square) distribution,
though analytically convenient, is unlikely to provide approximations with opti-
mal small sample properties. A better choice can be based on the requirement
of "local exactness", i.e. we select a distribution function which provides an a-
symptotic series that reduces to the exact formula when sufficient information
allows to transform the model, so as to create a scalar error covariance matrix.

Moreover, one might use a Cornish-Fisher expansion (see, e.g. Cornish
and Fisher (1937), Fisher and Cornish (1960), Hill and Davis (1968), Magdali-
nos (1985)), to correct the test statistic, instead of using an Edgeworth expan-
sion to correct the critical values. The two corrections are asymptotically equi-
valent to the order of the required accuracy, but the former has two important
advantages.

First, the Cornish-Fisher expansion avoids the well-known problems of the
Edgeworth expansion in the tails of the approximated distribution. Since the
Cornish-Fisher expansion is simply the inversion of the Edgeworth correction of
the critical values, it can be expected to have very similar properties in the main
body of the approximated distribution. But, in hypothesis testing we are intere-
sted in approximating the tail probabilities, and in the tail area the properties are
quite different. The Edgeworth approximation is not a proper distribution fun-
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ction, and often assigns negative "probabilities" in the tails of the distribution.
On the other hand, the Cornish-Fisher corrected statistic is a proper random va-
riable and the tails of its distribution are well behaved.

Second, in applied econometric research it is more convenient to use the
Cornish-Fisher correction of the test statistic rather than the Edgeworth corre-
ction of the critical values. The same Cornish-Fisher corrected statistic can be
used for testing at any level of significance, whereas different Edgeworth corre-
cted critical values have to be calculated for testing at different levels of signifi-
cance. Also, once a Cornish-Fisher correction is given, the evaluation of the sig-
nificance level (p-value) for a given realization of the test statistic is straightfor-
ward, since it requires the integration of standard density functions.

The property of "local exactness" can be easily extended to Cornish-Fisher
expansions. We shall say that a Cornish-Fisher correction is locally exact if it re-
duces to a statistic whose exact distribution is known as -0, where § is the
radius defined above,

All these correction methods lead to tests with sizes differing from the no-
minal size by an error of the same order of magnitude. Therefore, a Monte-Carlo
study is needed to evaluate the relative performance of these corrections in
small samples.

The structure of this paper is as follows. In Section 2 the general notation
and assumptions are presented. Analytic formulae for the locally exact Edge-
worth and Cornish-Fisher second order corrections of the t and F tests are pre-
sented in Sections 3 and 4 respectively. In Section 5 these formulae are specia-
lized for the heteroscedastic specification of the linear model. We simplify con-
siderably the original formulae in order to increase computational efficiency.
The performance of the alternative size corrections considered in this paper is
evaluated by a Monte-Carlo study, the findings of which are discussed in Secti-
on 6. Some general comments and concluding remarks are included in Section
7. All proofs are gathered in the Appendix.

2. NOTATION AND ASSUMPTIONS

Consider the equation
y=XB+ou, 2.1)

where y is the Tx 1 vector of observations on the dependent variable, X is the
TXn matrix of the exogenous regressors, B is a nx 1 vector of unknown para-
meters, and ou (6>0) is the Tx1 vector of unobserved errors. The random
vector u is distributed as N(0, Q"), where the elements of the TxT matrix 2 are
known functions of the unknown kx 1 parameter vector y and, possibly, of a
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Txm matrix Z of observations on a set of exogenous variables, some of which
might be regressors too. The vector y belongs to the parameter space ®, some
open subset of the k-dimentional Euclidean space.

Let ¥ be a consistent estimator of y. For any function f=f(y), we write f=
f(¥). The feasible GLS estimators of B and o2 are

B=X'2X"'X Qy, 2.2)
&2 =(y-XB)" Q (y-XB)/(T-n). (2.3)

We write €;, Q;, etc. for the TxT martices of first, second, etc. order deriva-
tives of Q with respect to the elements of v, and we define the (k+ 1) x 1 vector &
with elements

So= (6%~02) /102, &=(¥,-1)/t (i=1,.,K), (2.4)

where t=1//T is the "asymptotic scale" of our expansions.
We assume that the following regularity conditions are satisfied:

() The elements of 2 and ' are bounded for all T and all ye®, and the matri-
ces
A=X"QX/T, F=X'X/T (2.5)
converge to non-singular limits as T—»oco,

(i) Up to the fourth order, the partial derivatives of the elements of Q with re-
spect to the elements of y are bounded for all T and all ye®.

(i) The estimator ¥ is an even function of u, and it is functionally unrelated to the
B parameters, i.e. it can be written as a function of X, Z, and ou only.

(iv) The vector 8 admits a stochastic expansion of the form
8=d,+1d,+ o(7), (2.6)
where w is an order of magnitude defined in the Appendix, and the expecta-
tions
E(d,dy’), EWTd,+dy)
exist and have finite limits as T—+>co.
The first two conditions imply that the matrices

A=XQXIT,  ASXGXT,  Aj=XQQ'QXT 2.7)
are bounded, so that, the Taylor expansion of ﬁ is a stochastic expansion
(Magdalinos (1986)). Provided that the parameters $ and y are functionally un-
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related, the assumption (jii) is satisfied for a wide class of estimators of y, that
includes the maximum likelihood (ML) estimators, and the simple or iterative e-
stimators based on the regression residuals (see Breusch (1980), Rothenberg
(1984a)). Also, it can be shown that the condition (iv) is satisfied for the same
class of estimators of y, provided that a condition similar to (i) is satisfied by the
Z matrix. It must be noted that we do notassume that the estimator y is asym-

ptotically efficient.
We define the scalars A, and p,, the kX 1 vectors A and p, and the kxk ma-

trix A, from the equations
b V1_ im E@, dy’ Mo 1_ im E(/Td,+d 2.8
I A —-Tm 1dy), m —Tl_w ( 1+d2). (2.8

We denote any nxXm matrix L with elements | as

L'_‘[(Iii) i=1,...0; l=1....,m] (2.9

with the obvious modifications for vectors and square matrices. if I; are n;xm
matrices, then the notation (2.9) means that L is the (2"&) pd (Zm j) partitioned

matrix with submatrices |;. Finally we use the tr, vec, ®, and matrix differen-
tiation notation as defined in Dhrymes (1978), p. 518-540. Throughout this pa-
per P,, P, stand for the orthogonal projectors into the space spanned by the

columns of the X matrix, and its orthogenal complement respectively.

3.THE t TEST

Let e, be a known scalar and e a known nx 1 vector. A test of the null Hypo-
thesis
e’'B=eo 3.1)
against one-sided altenatives can be based on the statistic
t=(e'B-en)/[62e' X' QX" e]™ (3.2)

We define the kX 1 vector |, and the k Xk matrix | as

I=[0) i=1,ds =L ij=1....x] (3.3)
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where
li=e'GAGe/e Ge, lj=6 'GC;Ge/e Ge, (3.4)
G=X'QxXm", Cy= Aj 2AGA+Ay/2. (3.5)

Lemma 1: Under the null hypothesis (3. 1), the distribution function of the
statistic (3.2) admits the Edgeworth expansion

2
Prt=x)=I(x) -%[(91 +%J+(p2 +%)x2 ]x i) +0(?), (3.6)

where

ps=tr(AL) + I'Alf4 + I'(n + A/2) — po + (ho—2)/4,
' (3.7)

pa={'Al=2I'A + Ao—2)/4,

and I(x), i(x) are the standard normal distribut/'ah and density functions respecti-
vely.

Corollary 1: The Edgeworth corrected a % critical value of the statistic (3.2)
is

Ea=Xa + %[(p, + %)+(p2 + %)xg ]Xa , (3.8)

where X, is the a % significant point of the standard normal diistribution.
Lemma 1 impilies the following

Lemma 2: Under the null hypothesis (3. 1), the distribution function of the
statistic (3.2) admits the Edgeworth expansion _

Pr{t=<x)=lr.n(x) —122— (P1+PX)X irn(X) +O(T°), (3.9)

where the quantities p,; and p; are defined in (3.7), and Irn(x), ir.a(x) are the di-
stribution and density functions respectively of a t variable with T-n degrees of
freedom. Moreover, the approximation is locally exact, i.e. ify is known to be-
long to a ball of radius 6, then the approximation becomes exact as d 0.
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Corollary 2: The Edgeworth corrected a % critical value of the statistic (3.2
s

2
Ea=Xu + —12—(p1 +p2x§)xa , (3.10)

where X, Is the a % significant point ot the t distribution with T-n degrees of free-
dom.

Using Lemma 2 we can easily prove the following

Theorem 1: Under the null hypothesis (3. 1),and provided that the regulari-
ly condiitions are satisfied, the Cornish-Fisher corrected statistic

N 2
t=t—%(p1+p2t2)t (3.11)

is distributed, with an error of order OF°), as a t variable with T-n degrees of
freedom. Moreover, the approximation is locally exact, i.e. ify is known to be-
long to a ball of radiius & , then the approximation becomes exact as 50,

Since the parameters p, and p, are functions of the unknown parameter Y,
in practice one has to substitute the estimates

Pi=pi(T)=p; +a(7) (i=1,2) (3.12)

for the parameters p; in (3.8), (3.10), and (3.11) in order to obtain operational
formulae.

In applied research, the statistic (3.11) can be used exactly as the corre-
sponding t statistic in the classical linear model to test the "significance" of the
structural parameters, or to test one-sided linear hypotheses on the elemernts
of B, etc. Also, the significance level (p-value) of a given realization, t, say, of the
statistic (3.2) can be obtained by comparing the transformed realization ’fo with
the tables of the t distribution, i.e. if I1.,(X) is the t distribution function with T-n
degrees of freedom, then it is easy to show that

Pr{t<to)=lra(ty) +O(%),
(3.13)
Prt>to)=1-lr.n( ;) +O(%).
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For the two-sided test of significance of the k-th structural parameter By,
we have that e has 1 in the k-th position and 0’s elsewere, so that the elements

of 1 and L are
Ti = Gy ‘AI O / Ok iij = gy éij O / G (3.14)

respectively, where g, is the k-th column, and g,, the k-th diagonal element
ofthe matrix G =X’ Q X/T)™.

4. THE F TEST

Let H be a rxn known matrix of rank r, and h a known rx 1 vector. A test of
the null hypothesis '

HB-h=20 | (4.1)

can be based on the Wald statistic

w=HB-h) HX EX'HT HB-h62. (4.2)
We define the kx 1 vector ¢, and the kxk matrices C and D as

€ = [(trAP)1<1,..xl, C = [(trCiP)is=1,...xl,

4.3)
B = [(rDyP); j=1,..4],
where the matrices A; and C;; are defined in (2.7} and (3.5), and
P=GQG, Q=H"(HGH") 'H, D;=APA/2. 4.4)

Lemma 3. Under the null hypothesis (4. 1), the disiribution function of the
stalistic (4.2) admits the Edgeworth expansion

X
r+2

Priw=x) = F,(x) = t2(hy+h; ——) %‘-f,(x)+0(r"'), (4.5)

where

hy = W[A{C4+D)] - ¢ Ac/d + ¢ + r[c’ M2 — o - (—2)Ao/4),
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(4.6)
hz = tr(AD) + {c"Ac— (r+2) (2c A -rA)1/4,

and F(x), 1.(x) are the distribution and density functions respectively of a chi-
square variable with r degrees of freecom.

Corollary 3: The Edgeworth corrected a % critical value of the statistic (4.2)
s
Ex=Xa + T[(h/1) + (ha/r(r+2))Xa] %o, (4.7)

where x, is the a % significant point of the chi-square distribution with r degrees
of freedom.

The parameters h, and h,, being functions of the unknown parameter vy,
ara not known, So, in practice one uses their estimates

h=h(})=h+o() (i=1,2) (4.8)

in order to render (4.7) an operational formula.

As the exact distribution of the statistic {4.2) has not been tabulated even
for the case where v is known, it is preferable to "correct” for the nominator de-
grees of freedom, thus obtaining the statistic

v=(HB—h)'[H(X’ﬁx)"H'T (Hﬁ-—h)/réz. (4.9)

The statistic (4.9) is the exact analogue of the familiar F statistic in the clas-
sical linear mode!, and it is exactly distributed as an F variable when the para-

meter v is known.
From Lemma 3 we derive the following

Lemma 4: Under the null hypothesis (4. 1), the distribution function of the
statistic (4.9) admits the Edgeworth expansion

Priv=x) =Fr_, 00 - 12 (g + QX)X i, (x) + O(x?), {4.10)
where
Gr = hy/r + {r-2)/2,

(4.11)
qQz = ho/(r+2) -1/2,
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and Ff_, (x), ff_, (x) are the distribution and density functions respectively of

an F variable with r and T-n degrees of freedom. Moreover, the approximation
is locally exact, i.e. if y is known to belong to a ball of radius J, then the ap-
proximation becomes exact as 6 0.

Corollary 4. The Edgeworth corrected a % critical value of the slatistic (4.9)
s

éa=Xu + 12 (q4 +Q2Xa)Xa, (4. 12)

where x, is the a % significant point of the F distribution with r and T-n degrees
of freedom.

Using Lemma 4 it is easy to prove the following

Theorem 2: Under the null hypothesis (4. 1), and provided that the regulari-
ty conditions are satisfied, the Cornish-Fisher corrected statistic

V = v-12(q,+qaV)V (4.13)

is distributed, with an error of order O 'y ), as an F variable with r and T-n de-
grees of freedom. Moreover, the approximation is locally exact, i.e. ify is knowrn
fo belong to a ball of radius 6, then the approximation becomes exact as 6 0.

The parameters q, and q. are functions of the unknown parameters h, and
h,, so that in practice one has to use the estimates

G=h/r+ (-2)/2,  @y=h, /(r+2)-1/2, (4.14)

in (4.12), and (4.13) in order to obtain operational formulae.

In applied research, the statistic (4.13) can be used exactly as the corre-
sponding F statistic in the classical linear model to test the "significance" of the
fitted equation, or to test two-sided linear hypotheses on the elements of 3, etc.
Also, the significance level (p-value) of a given realization, v, say, of the statistic
(4.9) can be obtained by comparing the transformed realization v, with the ta-

bles of the F distribution, i.e. if Ff_, (X} is the F distribution function with r and
T-n degrees of freedom, theniit is easy to show that

Priv>ve) = 1— Ff_, (Vo) +O(13). (4.15)
For a test of the joint significance of all the structural parameters, we have

" that r=n, and H is equal to the nxn identity matrix. Therefore, the elements of c,
D,andC'= C+Dare
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a=trAG, d;=trAGAG/2,  cf =tr(Aj+A;/2)G~3dy (4.16)

and the coeflicients of the Cornish-Fisher axpansion are

q, = [TAC —¢’Ac/4 + ¢'p)/n + G A2 — o — (N-2) (Ae-2)/4,
@17

%=t [trAD+71—[c’Ac—(l'l+ 2)(2c'A—n{Aq —2))]]-

5. HETEROSCEDASTICITY AND RANDOM COEFFICIENTS

A model that includes many of the heteroscedastic and random coefficient
specifications occurs when the error variance is assumed to be alinear function
of a set of exogenous variables (see, e.g. Hildreth and Houck (1968), Goldfeld
and Quandt (1972), Amemiya (1977)). In this case, the disturbances of equati-
on (2.1} are assumed to be independent normal variables with zero mean and
variances

of=zy (=17,

where (5.1)

2, = (1, 20, ..., 24

is the t-th observation on k exogenous variables, and y=(y;,..., ¥} IS a non-ze-
ro unknown parameter vector. We define the T xn matrix X, and the T Xk matrix
Zwith rows x,"and z, respectively.

Our assumptions imply that, without further restrictions, the parameters ¢
and vy are not simultaneously identified. A reasonable restriction is to set 6=1,
and this specification is used in the computation of the size corrections for the
asymptotic chi-square (or normal) test. Under this restriction, however, the tran-
sformed model is supposed to have disturbances with identity variance matrix.
This is true only if we can estimate the parameters y exactly, i.e. for infinite sam-
ple size. In smali samples the estimate of the variance of the transformed model!
usually ditfers from unity (variances as small as 0.5 and as large as 2.3 were ob-
served in our experiments), indicating that the variance matrix of the disturban-
ces in the transformed model is considerably different from the identity matrix.
Areasonable method to account for this, is to estimate the variance of the trans-
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formed residuals and use the traditional formulae for the t and F test statistics.
The resulting tests are locally exact, and, as we shall show in our simulation ex-
periments, they have size closer tothe nominal than the asymptotic tests.

In applied research, some of the most frequently used estimators of y are:

(i) The Goldfeld-Quandt (GQ) estimator

T L,T'r son2
Yea =[22tzt] Zzt(Yt_xt B) , (5.2)

t=1 t=1

where ﬁ is the ordinary least squares (OLS) estimator of B.

(i) The Amemiya (A) estimator
. § T

Ya= l:i(z:"?eo J_z tht' ] Z[Zt’ Yea )—2 Z4 (Vt - xt’ET . (5.3)

t=1 t=1

(iii) The iterative Amemiya (IA) estimator

-9 T

Vo= l:i(ztl'?a—1 )-2 ztzt’:l Z(Zt’?m )_2 zt(yt - xt’Eu—1 )2 ' (5.4)

t=1 t=1

wherea = 2,3, ... and Yo, B, are the estimator of y and the corresponding
feasible GLS estimator of B from the previous iteration. Of course Y1=Ya-

(iv) The maximum likelihood (ML) estimator, which maximazes the function

LBy)= —%glog(z(v)—%i(yt ~xB) /(1) 59

t=1

We can show that the regularity conditions of Section 2 are satisfied for all
these estimators provided that the quantities |zﬁ[, |of|, Iot‘zl are bounted,

and that the matrices
T ’ — T ’
A=Y oxx IT, A=Y oi'zz /T,

t=1 t=1

(5.6)

T, T,
F=Yxx /T, F=Y 2z /T

t=1 t=1
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converge to non-singular limits as T—»w. Also, we define the matrices
T I —_ T *

=Y ofxx; /T, T'=Yo{zz /T,
=1

t=1
(5.7)

G=A", G=A"', B=F' B=F"

it is well-known that the estimators A, 1A, and ML are asymptotically effici-
ent, whereas the estimator GQ is not. Moreover, it is easy to show that the A e-
stimator converges to the ML estimator as o>,

The computation ot the vectors | and ¢, and of the matrices L, C, and D
from the definitions (3.3) and (4.3) is straightforward, but it can be computatio-
nally expensive when k is large. Then it is preferable to use the following com-

putational procedure:
Given an arbitrary nx 1 vector h, we define the matrices

T r 2 ’ T ’ ’
L(h) = Zs{s(xt h] 22, 1T, Ch) =3 o [x, thtxt /T 5.8)
S = t=1 _
which are the moment matrices of the tranformed variables
2; =zt(xt h)/c?, X; =x/ G,

sothey can be computed using standard procedures.
Proposition 1: The vector £ and the matrix L in (3.3) can be computed form
I=-L{h)y, L=2[LMh)~-CH)GC )], - (5.9

where h=Ge/(e 'Ge)"" . Similarly, the vector ¢, and the malrices C and D in (4 3)
can be computed from :

c=-Cyy, C=2(C,~Cz), D=Cy2,

where (5.10)

Ci=Ylh)  C.=.ch)ac(h) o S cn)Pch)

and b; =% w;, wherel; (i=1, ... ,r) are the r non-zero eigenvalues of P and w; a-
re the corresponding orthonormalised eigenvectors of P. The difference betwe-
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en the original definitions (3.3), (4.3) and the formulae (5.9), (5. 10} are of order
O(?), i.e. itis negligible to the order of our approximation.

it remains to find the values of the parameters (2.8), which can be expres-
sed in terms of the matrices (5.6), (5.7), and the vectors

T T T ,

t=1 t=1 t=1
where (5.11)
v; =202x, Bx, — x, BI'Bx,.

Proposition 2: Under the assumptions of this section, the parameters (2.8)
for the GQ estimator of y can be estimated as

A=2BIB, p=-BE A=2y-AAy,

(5.12)
Ag= 2(1— y’Ay)—'yM, Ho= tr(AA)—2k —vAul,
and for the A estimator of y they can be estimated as
A=2G, A=0, Ay= 2(1— y’K’y), Ho =—YAn,
' (5.13)

3
n=-G&-4Y G[A@ -(zea'z /T)b,].
= . =1
For the IA and ML estimators of y, the paramelers (2.8} can be estimated by u-
sing (5. 13) with

p=-G&,, (5.14)

where g; is the i-th coloumn of the matrix G, b; is the i-th coloumn of the matrix
B, and A; = (Z'Q8,;Z/T).

Using Propositions 1 and 2, it is easy to compute the parameters (3.7) and
(4.11) of the Cornish-Fisher expansions. Note that all the matrices appearing in

Propositions 1 and 2 are nxn or kxk, and, apart from A; and (Z'QQ7"' Zm), they
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are calculated in the estimation process. Furthermore, the trace of the matrix
AA can be computed very easily. From a computational point of view, the for-
mulae given above represent a considerabie improvement of the original for-
mulae (see Rothenberg (1984b)), and they simpilify the calculation of the Edge-
worth and Cornish-Fisher corrections. Of course, in the operational formulae, y
has to be substituted by the corresponding consistent estimator.

6. THE SIMULATION EXPERIMENTS

In the introduction we gave some heuristic arguments in favour of using lo-
cally exact rather than asymptotic approximations, and we proposed the use of
the Cornish-Fisher correction of the test statistic instead of the Edgeworth cor-
rection of the critical values. As all these methods have an error of the same or-
der of magnitude, we shall use Monte-Carlo experiments to compare their per-
fermance.

Fer the simulation we assumed the four parameter linear mode!

4
Ve =2 XgB;+u, ut-N(O,csf), t=1,..,20),
=

{6.1)

’ F

0‘2 =z[ FYl zt = (1! x‘l2! xtSv Zﬂ)'

Sik values of y were investigated: v, = (y4,0.0.0), ¥ = (v4,1,0,0),

Y(a) = (71,0.0, 1)- 7(4) = ('}‘1- 1, 1: 0)! 7{5} = (71- 1! 0- 1)- 7(6) = (71! 1! 1! 1) ’

In applied research one often faces not only heteroscedastic disturbances,
but also multicollinear regressors. Therefore, we decided to use multicollinear
explanatory variables. Following McDonald and Galarneau (1975) we compu-
ted the regressors by

x=1 ({t=1,.,20andj=1), '
(6.2)
X = (A" Gy + ALy (t=1...,20and}=2,3,4),

where [; (j=1, 2, 3, 4) are independent N(0,1) pseudo-random numbers. and A
wANe conaghon coghcen bodiween any two explanatory variables. Four valu-
es of A were considered: 0.0,0.1,0.5, 0.9,
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Without loss of generality we confined ourselves to the case with 62 =1.

{(Cases with0 < 0';" <1 are tackled by using the inverse of 62 instead of of )- So,
we created the vectors z,"= (1, X, X3, Zi2), Where zy (t=1,..., 20) are indepen-
dent N(0,1) pseudo-random numbers, and the theoretical variances, cf =z'y,

under the restriction that 62 = 1. To do so, we calculated v, so that 62 =z, 'y=1

for all z,’in our sample. Then, using the square roots of the variances, o?, we
computed the heteroscedastic disturbances, u,, from

U, =0, Op=+02, (6.3)

where g, (t=1,..., 20) are independent N(0,1) pseudo-random numbers.

Following Breusch ((1980), Theorem 5, p. 336) and bearing in mind that
the t and F tesi statistics can be derived from the Wald statistic, we deduce that
the distributions of these statistics do not depend upon the values of the pa-
rameters B; (j=1,..., 4) in the model (6.1) when the null hypothesis is correct. So,
the results of the experiments concerning the actual size of the t and F tests are
independent of the values of B; (j=1,...,4). For the sake of simplicity we as-
sumed B; =0 (j=1,...,4), thus calculating the y; (t=1,...,20) as

yi=u, uw~N(0,06f), of=z'yx=1. - (6.4)
For the t test we considered four hypotheses of the form (3.1)

B1 = 0, BZ = O, Ba = 01 B4 = O| (6.5)

0
o| h=|o} (6.6)
1

For any combination of the values of y and A a matrix of regressors, X, was
created according to (6.2), so that the experimental results do not depend on a
particular realization of the X matrix. For any realization of the X matrix a matrix
Z, with rows z,’, was created, and 500 vectors y were used to implement 500
replications of the procedure discribed beliow:

The parameters B; (j=1...., 4) of the model
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4
ye= zxtjﬁf +U (6.7)
=

were estimated via the OLS method, and the OLS residuals, U,, were used to

compute the OLS (Goldfeld-Quandt) estimate of y (see (5.2)). Using the OLS re-
siduals, U,,and Yaq We computed the GLS (Amemiya) estimate of y (see (5.3)).

We used the Amemiya estimator because it is the simpler of all the asymptoti-
cally efficient estimators of y discussed in Section 5, which are expected to give
similar results. We used the calculated value of ¥, in order to estimate the mo-

del (6.7) viathe GLS method. The GLS estimate of B = (B, B2, Ba, Ba)

-1

B= [i(ztl?A )—1tht’] i(zt’?A )_1xtyt ; (6.8)

t=1 t=1

were used to compute the statistics (3.2), (3.11), (4.2), (4.9), and (4.13) and the
Edgeworth corrected critical values (3.8), (3.10), (4.7), and (4.12) forthetand F
tests.

Having completed 500 replications of the procedure discribed above, for
each combination of the values of y and A, we calculated the actual size of the
different methods of conducting the t and F tests.

The order of execution of the experiments for the different couples (y, A)
was randomly determined, thus making the results independent of the sequen-
tial quality of the pseudo-random numbers needed for the creation of the X and
Z matrices, and the y vectors, These pseudo-random numbers were generated
by use ofthe |.M.S.L. library. ‘

The results of the experiments are presented in Tables 1 and 2, and in Fi-
gures 1 through 6. Since the t test of each of the null hypotheses (6.5) against
two-sided alternatives is a special case of the F test, we decided to examine the
performance of the t test with one-sided alternatives. For this reason the results
for the t test had to be evaluated separately for the cases of positive and nega-
tive t statistics.
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In Table 1 we give the null rejection probability estimates for the case of the
positive t statistics for the test of significance of the parameter B;. The results for
the other t tests examined in our experiments are similar and omitted. The follo-
wing notation is used: N, T are the t test procedures implemented by the stati-
stic (3.2) using the normal and t distributions respectively, NE, TE are the t tests
based on Edgeworth approximations from the normal and t distributions respe-
ctively, and CFT is the Cornish-Fisher corrected t test.

The comparison of the various t test procedures must be done in terms of
the difference between the actual and nominal size of the corresponding te-
sting methods. The various methods can be ranked in such a way, so that the
smaller the difference between the actual and nominal size, the better is the
corresponding test procedure.

Table 1 shows that the CFT test is, almost uniformly, the best followed by
TE, and T, being the second and third best respectively. The worst performan-
ce is that of the N test. Inspection of the table reveals that the asymptotic tests
(N, NE) are, in general, worse than the exact tests (T, TE, CFT) with the excepti-
on of some cases in which the NE correction pereforms better than the uncorre-
cted T method. There are few cases with N better than NE, and/or T, TE better
than CFT.

The null rejection probability estimates of the F test of "significance" of the
fitted equation, i.e. the joint significance of the parameters B,, Bs, and B,, are
presented in Table 2. The following notation is used: X2, F are the F test proce-
dures implemented by the statistics (4.2), (4.9) using the chi-square and F dis-
tributions respectively, X2E, FE are the F tests based on Edgeworth approxi-
mations from the chi-square and F distributions respectively, and CFF is the
Cornish-Fisher corrected F test.

As in the case of the t test, the various methods used to implement the F
test can be ranked according to the difference between their actual and nomi-
nal size.

Table 2 shows that, in every case, i.e. for every combination of the values of
v and A, the CFF test performs better than the tests FE and F, being the second
and thirt best respectively. The next best is the X2E test, whereas the X2 test is
the worst of all. Therefore, using information of Table 2 the various F testing
procedures can be ranked in decreasing order of performance as CFF, FE, F,
X2E, X2. It should be emphasized that the uncorrected F tests is better not only
from the chi-square test, but in most cases it is better than the Edgeworth-cor-
rected chi-square test.

Also, the alternative methods of size correction can be compared diagram-
matically. In a square diagram the actual size (i.e. the null rejection probability
estimate at a given nominal size) of the t or F test is plotted against the nominal
size. Under ideal conditions, the actual and nominal sizes are identical, and,
consiquently, all the observations should be located at the 45 degrees diagonal
of the diagram. This line is the cumulative distribution of a U(0,1) random vari-
able. Of course, if we had a random sample from the U(0,1) distribution, then,
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because of the sampling error, the observations would not be located exactly at
the 45 degrees line. However, they should be inside a symmetric band, around
the 45 degrees line, and with width given in the table of the one-sample Kolmo-
gorov-Smirnov distribution (see J. Durbin (1973)). That is, if a particular curve is
inside the band, then its deviations from the 45 degrees line can be attributed to
sampling error, i.e. they are statistically insignificant. On the other hand, if the
curve intersects the band bountary, then we refuse the hypothesis that its de-
viations from the 45 degrees line are due to random sampiling. Itis clear that the
band represents a kind of confidence interval which facilitates the interpretation
of the information conveyed. In the diagrams the band corresponds to the 95%
confidence interval. It should be noted that, as far as the diagrams for the t test
are concerned, the lower left corner refers to the positive t statistics, whereas
the upper right corner refers to the negative t statistics.

Here, we present only six of the one hundrend and twenty diagrams produ-
ced during the execution of our experiments. The chosen diagrams are repre-
sentative of all the others, and were selected on the ground of their clarity. Figu-
res 1, 2, and 3 portray the performance of the various t test procedures, where-
as the performance of the F testing methods are illustrated in Figures 4, 5, and
6. Figures 1 and 4 show the performance of the various size corrections in tho-
se cases where the error term in the population is homoscedastic. Figures 1
through 6 have an advantage over the Tables 1 and 2 in that they give us infor-
mation about the performance of the various test procedures at any level of the
nominal size.

Actual Size of the Test

’.57 NorEdge ——— [
AR I// 7 t-distr ~— ——|}
i t-Edgew ———
0 CorFish i

0. A 2 3 4 5 8 g 8 9 1

Nominal Size of the Test
A=.9 D=,00002

Figure 1. Size corrections ofthe ttestforfis, y ‘=(vs1, 0, 0, 0) and A= .9.
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Figure 4. Size corrections of the Ftest y ‘=(y;, 0, 0, 0) andA=.5.
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Figure 6. Size corrections ofthe Ftest y ‘=(y;, 1, 1, 0)and A= 0.

In Figures 1 and 3 all the curves lie entirely inside the band with the exce-
ption of the curve corresponding to the N testing procedure, and the additional
exception of a very small part of the curve of the T testing method in Figure 1.
On the contrary, in Figure 2 only the curves of the CFT and TE size corrections
lie inside the band. It must be noted that, according to the properties of the
band discussed previously, all the curves lying entirely inside the band are, at
the 5% level of significance, statistically identical so that it is meaningless to
rank their performance. For the curves, however, intersecting the band a ran-
king is resulted in, which is consistent with the information of Table 1. It is note-
worthy that for p-values greater than or equal to almost 10% the NE size corre-
ction performs better than the conventional t test.

In Figures 4 and 5 only the curve corresponding to the CFF testing proce-
dure lies entirely inside the band, whereas in Figure 6 all the curves have large
parts outside the band. Thus, in Figures 4 and 5, the difference between the
actual and nominal size of the CFF test is statistically insignificant, at the 5% sig-
nificance level. Figures 4 through 6 confirm the ranking of the various F testing
methods resulted in Table 2 for p-values less than or equal to almost 10%. It
must be noted, however, that for p-values somewhat greater than 10% the X2E
size correction performs better than the conventional F test.
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Figures 1 and 4 show that the performance of the Edgeworth or Cornish-
Fisher size corrections is good even in cases where the population errors are
homoscedastic, i.e. the error covariance matrix is a scalar matrix.

Perhaps more importantly, the tables and diagrams presented above con-
firm our theoretical considerations about the superiority of the locally exact (de-
grees of freedom adjusted) tests over the asymptotic (unadjusted) tests. The
fact that often the uncorrected t or F tests are superior to the Edgeworth-corre-
cted normal or chi-square tests was quite unexpected and it should be taken
seriously into account in applied research. '

7. CONCLUDING REMARKS

In this paper we derived Edgeworth approximations for the distribution
function of some GLS test statistics based on the t and F distributions, and the
corresponding Cornish-Fisher corrections of the test statistics. Both the appro-
ximations and the corrections are locally exact, i.e. they reduce to the exact for-
mulae when the error covariance matrix is known up to a multiplicative factor.

We conducted a Monte-Carlo study in order to compare the performance
of these corrections. Our results indicate that the locally exact Edgeworth corre-
ctions are generally better than the traditional Edgeworth corrections. Further-
more, our experiments indicate that the Cornish-Fisher corrections perform
better than the locally exact Edgeworth corrections almost everywhere in the
parameter space. ‘

Finally, from (4.13) it is clear that when the sample size is small, the Cor-
nish-Fisher corrected F statistic can assume negative values, a somehow trou-
blesome possibility since the Cornish-Fisher corrected F statistic is assumed to
be distributed as an F variable. Fortunately, negative values are encountered
only when the uncorrected F statistic assumes very large positive values, i.e. in
cases where the null hypothesis is rejected with very high probability by the un-
corrected F test. Negative values of the corrected F statistic are extremely un-
likely, when the null hypothesis is true. Therefore, in applied research a nega-
tive Cornish-Fisher corrected F statistic implies the rejection of the null hypo-
thesis with very high probability. Nevertheless, this can be a very useful warning
indicating that the sample size is too small relative to the observed correlations
so that the asymptotic methods are not applicable.

Needless to say that this problem is not encountered only in Cornish-Fi-
sher corrections. When the sample size is small, the Edgeworth corrections can
produce negative critical values. In both cases the use of the F distribution in-
stead of the chi-square distribution reduces the possibility of such over-corre-
ctions, since the F statistic (4.9) and the critical values of the F distribution are
smaller in magnitude than the chi-square statistic (4.2) and the critical values of
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the chi-square distribution. This is the reason why we did not consider in this
paper the Cornish-Fisher correction of the chi-square statistic.

The use of the Cornish-Fisher corrections in applied research is indeed ve-
ry simple. Once the corrected statistics have been calculated, they can be trea-
ted exactly as the corresponding statistics in the classical linear model. There-
fore, we hope that these corrections can be a useful tool in applied statistical
and econometric research.
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APPENDIX

For any stochastic quantity (scalar, vector, or matrix} Y-, we write Y= =co(1:i)
it for every n>0 there exists an >0, such that

Pr|Y:/x'| > (Hogt):]1 =0 (z") as 10, (A1)

where| - | is the Euclidean norm. The use of this order is motivated by the fact
that, if two stochastic quantities differ by a quantity of order m(t'). then under ge-
neral conditions the distribution function of the one provides an asymptotic ap-
proximation to the distribution function of the other, with an error of order O(t).
Moreover, the orders o(-) and O(-) have similar operational properties. For de-

tails see Magdalinos (1986).

Proof of Lemma 1: It is easily proved that under the null hypothesis (3.1)
the t statistic (3.2) admits a stochastic expansion of the form
t=t + Tty + T8 + 0(tY), (A.2)
where
tb=k'b=e'b/(e’'Ge)'?

t1 = k’b-—k'b(SQ + g*) /2. (A3)
tr=—k'be (8o + ) /2 + K'D [3 (53 +g?) +2809:1/8,

and

k =e/(e'Ge)'?, b=GX'QuNT, b~N(0,G), b.=GX'QMu,

G=(X'QX/T)™!, M=I-X(X'QX)'X'Q, (A.4)
g-=k'G.k, G- =VT(G-G).

Let s be an imaginary number. Also, let I(x) and i(x) be the distribution and den-
sity functions respectively of a standard normal variable. Taking expectations in
(A.2) we find that the characteristic function of the statistic (3.2) is

01 () = E [exp(s(to+1t +1°t,))] +O(<%) =

=@(s) + % s(sm+s°my) ¢ (s) + O, (A.5)
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where

¢ (s) = E [exp(sto)],

kK k K
Ty = 2 Zlij(gagﬁga‘i ‘Qij)"'zgi(;\-io—lii)"'lo—llo.
=t 1 i=1

k k k
1

=1
gi = k'Gk, g;=k Gk,
G =-GAG, G;=GAGA-Ay2)G.
Dividing {(A.5) by —s and inverting the Fourier transform we complete the proof

of Lemma 1. Magdalinos (1986) proves the validity of this approximation.

Proof of Lemma 2: Let |(x) and i(x) be the distribution and density functions
respectively of a standard normal variable. Also, let I1.,(x) and it.,(x) be the di-
stribution and density functions respectively of a t variable with T-n degrees of
freedom. Fisher (1925) shows that the Edgeworth expansions of the t distribu-
tion and density functions are
lrn00) = 1(X) = (1/4)T2(1 +38)xi(x) + O(t*),
and (A.7)
itn(¥) = i(x) + O(%),

where T = T 2. Using Lemma 1, (A.7) and simple algebra we find
172 . 3,
Prt<x) = lun(¥) — 3 (P1+PX)xirn(x) + O(). (A.8)

As 30, y becomes a fixed known vector, so that
A=0, A=p=0, A=2, M=0,
and (A.9)

pi=pz2=0.



The case of hetsroscedastichy 417

Therefore, the approximation is locally exact.

Proof of Theorem 1. Under the null hypothesis (3.1}, the t statistic (3.2) can
be easily shown to admit a stochastic expansion of the form
t=ty+th+ T+ oY), | (A.10)
where the firsttermin the; expans:ion is
ty=e'b/(e'Ge)'?, b=GX QuNT. (A.11)

Therefore, the Cornish-Fisher corrected t statistic (3.11) admits a stochastic ex-
pansion of the form

t = to+1t +1° (t—tg) + (), (A.12)
where
ts= (P1+p2t e/ 2. (A.13)

Let s be an imaginary number, and let g(s), ¢(s) be the characteristic fun-
ctions of the t statistic (3.2) and of a standard normal variable respectively. U-
sing (A.12) we find that the characteristic function of the Cornish-Fisher corre-

cted statistic t is

§y (8) = ¢y (5) - 1°s E[exp(sto)ts] +O(t") =
12 : '
= @i (s) -4 slpis+pa(3s+s7)] 9 (5) + O(r). (A14)
Dividing by —s, inverting the Fourier transform and using Lemma 2 we find'

Pr(f <x)=Pr{t=x)+ % (P14 p2)XiTn{X) + OFH =

2 2 :
= htal®) — 5 P1+PXYirn() + 5 (Pr+paX)xiraly) + O =
= ra(X) + O@°). : (A.15)

Working as in the proof of Lemma 2 we find that as 50, p;=p.=0, s¢ t=t
is exactly distributed as at variable with T-n degrees of freedom. -
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Proof of Lemma 3: Lemma 3 follows immediately from Rothenberg’s
(1984b) Proposition 2. The validity of this approximation is proved in Magdali-
nos (1986).

| Proof of Lemma 4. Let F.(x) and f.(x) be the distribution and density functi-
ons respectively of a chi-square variable with r defrees of freedom. Also, let

Fi_, 00 and f7_,, (x) be the distribution and density functions respectively of an F

variable with r and T-n degrees of freedom. Then we can easily show that the
Edgeworth expansions of the F distribution and density functions are

(00 = FU) + - (--2-n0 (09 + O(s,
and (A.16)

£, () = rf(ng) + O().

From Lemma 3, (A.16), the definitions of the statistics (4.2) and (4.9) and the
use of simple algebra we find '

Privsx) = Ff_, () ~(qQi+a20x ff_p () + O(Y), (A.17)
where
qs = hy/r+(r-2)/2, gz = ho/(r+2)-1/2. (A.18)

As 30, y becomes afixed known vector, so
A=0, A=p=0, 2=2 pP=0
and (A.19)
hy = -r(r-2)/2, hy =r(r+2)/2.
From (A.18) and (A.19) we have that
a1 = Q2 =0, (A.20)

which means that the approximation is locally exact.
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Proof of Theorem 2: It can be easily shown that under the nuil hypothesis
(4.1) the F statistic (4.9) admits a stochastic expansion of the form

V=V + vy + TVa2 + o), | (A.21)
where the first term in the expansionis
vo = b 'Qb/r, b = GX'QuivT. (A.22)

Therefore, the Cornish-Fisher corrected F statistic (4.13) admits a stochastic
expansion of the form

¥ =vo + tvy + T° (V2 —V3) + @(t), (A.23)
where
Vs = (Q1+d2Vo) Ve (A.24)

Let s be an imaginary number, and let g,(s), ¢,(s) be the characteristic fun-
ctions of the F statistic (4.9) and of a chi-square variable with r degrees of free-
dom respectively. From (A.23) it is implied that the characteristic function of the
Cornish-Fisher corrected statistic ¥ is

&y (8) = ¢y (8) — 1° SE[exp(svo)va] + O(c%) =

= 9u (8) ~ 7 S[A10ra(8/) + 82 22 grra(siM] + 0. (A.25)
Also, it can be shown that
OO = Moz, () =+ 2aa(™). (A.26)

Dividing (A.25) by -s, inverting the Fourier transform and using Lemma 4,
(A.16), and (A.26} we find

Pr(¥ <x) = Prv=x) + 1 [Qipa(m) +G2 52 1.4 ()] + O(D) =
= Priv=x) + ‘c [q1xf(r0) + G2 ()] + o¢®) =
= Pr{v=x) + 7 (g1 +q2)rxf{rx) + O(r } =
= Ff_n (0 =T {Qy-+a2)x ., () + 7% (Qr+AIX B (0 +0(r )=
= Ff_, () + O(%). (A.27)
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Working as in the proof of Lemma 4 we find that as §+0, g;=0,=0, so v =v
is exactly distributed as an F variable with r and T-n degrees of freedom.

Proofof Proposition 1.1t can be easily shown that
T *» T r
.A( = —-20’{42“)(,)(' /T. A; =Zcfazﬁztixtxt /T, A'l = 2Ai: (A.ZB)
=1 =1

so that (5.9) are implied from the definition (3.4). Also note that the nxn positive
semidefinite matrix P has r positive eigenvalues, so that

v * r rl
P=WEW = YAaww, =3 hh, h=3"w, (A.29)
=1 =t

where ¥ is the diagonal matrix of eigenvalues of P, W is the matrix with co-
lumns the standardized eigenvectors of P, and A; (i=1...., 1) are the r positive ei-
genvalues of P. in matrix notation

P=WEW = WE) ws"® =vy, Y =wW.E" (A.30)

whaere Y is a nxr matrix with columns the vectors h;,. Then it can be shown that
' I ’
% Pxe = XYY xg = D" %, by X, (A31)
=1
Using definition (4.3) and (A.31) we find that the j-th element of the vector ¢ is

T ’ r T ’ 2 ’
¢ =trAP = -3 o *zyx, Px, /T=~) Zc{s[hi xt) ZyZ, ¥, (A.32)
=1 =l = .
from which the first of (5,10} is implied. The rest of the proof is similar and omit-
ted.

Froof of Proposition 2: We define the Tx 1 vectors U, & and € with ele-
ments

—_ 2 2
U =uy —Gy,
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g, =2ue,—te2, e,=x, BX'u/+/T, , (A.33)
§ =2u8,—182, & =x,  GX'Qu/JT.

Collecting terms of the same order of magnitude in (5.2) we find that the sam-
pling error of Ygq is

890 = ﬁ('?GQ - Y) = d* -Td*z f
where (A.34)
d3 =Bzu/JT, dSP=Bz%/JT.

Expanding (5.3) in a Taylor series and collecting terms of the same order of
magnitude we find that the sampling error of ¥, is

e —J—(yA —-y)=di- 1:d..2+m( )
where (A.35)

d =G(z'2u/VT)
df = (znze/\/?)—zzk“ﬁ(zmiﬁ/ﬁ)d +ZZGA GAG(z'Q%u/T)dfe,

and dZ%is the i-th element of the vector dS° . Similarly, from (5.4) we find that
the sampling error of ¥ for all ais |

8% =T (Yo - 71)=dy —1d% + (),

where - (A36)
4 =G(z'Q%u/T)

%, =G(2°0%/4T)- QZG(ZQQu/J—)d +ZZGAG( Z'Q%u/T)d},
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and d} is the i-th element of the vector df,. Since, as a»« the IA estimators

converge to the ML estimator, it is clear that the sampling error of the ML esti-
mator admits a stochastic expansion that is the same with (A.36).
Itis easily shown that

E(d3°)=E(d})=0, E(d3?)=BE, E(d® )=Gé,,

E(d?;)=GE, +42k“ G[Kia -(zaQ'z/T)b ] (A.37)
i=t

E(d,ﬁodf;" )=ZBI‘B, E(df},d:1 ):2’6,

where g, is the i-th coloumn of the matrix G, b;is the i-th coloumn of the matrix

B,and A, = (Z'QQZ/T). Using the expectations (A.37) we prove the formulae

(5.12), (5.13), and {5.14) for A and p.
From (2.3) we take that

62 =[u'fzu—b’(X’ﬁX/T)bm(«:)]/(T—n), (A.38)
where
b=GX'Qu/vT =ﬁ([§-[3)+m(r), (A.39)

and ﬁ is the feasible GLS estimator of . We define the scalars
wo =T (UQu/T-1), w, =JT(UQu/T+a),

where (A.40)

T
a,=-E(uQu/T)= o224/,
t=1

and the kx 1 vectors w, a with elements w;, g; respectively. Expanding (A.38) in
a Taylor series and collecting terms of the same order of magnitude we find
that, for any estimator of y whose sampling error admits a stochastic expansion
of the form (A.34) - (A.36), we have
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8y = ﬁ(&z - 1) =0y +10, +co(1:2).
where (A.41)
Go=Wo—2a'dy;, G;=wW'd, +d,, Ad,+a’d,, —b’Ab+n,
For all the estimators of y we have that
E(wods)=2y, E(w'd.)=-2k. (A.42)

Using the expectations (A.42) we find

A=2-4a’y + a’Aa,
A =2y-Aa, (A.43)

Ho =tr(KA)—2k—a'p.

Substituting a = Ay and the values of A and p for the different estimators of Y we
complete the proof.
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