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Abstract 
This paper studies an overlapping generations model with selfish agents, natural 
resources and human capital externalities. The initial result is to quantify the 
economic effects of intergenerational transfers by comparing a complete mar-
kets allocation with transfers to an allocation without transfers due to in-
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them. Finally, it is shown that transfers can be financed through a constant 
lump-sum tax relative to the output level. 
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1. Introduction 

In the last few decades, large investments have been carried out around the globe in 
order gradually to satisfy higher fractions of energy demand through more renew-
able natural resources. At the same time, economies abundantly endowed with 
exhaustible resources are preparing themselves to face the challenge of upcoming 
resource depletion. As an example of this, large policy debates started in resource-
rich countries (e.g. Norway, Venezuela) as regards the long-term sustainability of 
social security policies (Harding & van der Ploeg, 2013). In light of these facts, the 
impact of the degree of resource renewability on modern economies −and more 
precisely on intergenerational transfers− qualifies as a relevant economic question. 

The paper analyzes this topic in a model of endogenous growth for a closed eco-
nomy with overlapping generations of selfish agents, natural resources and human 
capital externalities. The initial result is to quantify the effects of intergenerational 
transfers on economic growth. The core contribution of the paper is then to in-
vestigate whether and how the degree of resource renewability influences the 
economic effects of intergenerational transfers. Intergenerational transfers consist of 
transfers that a given cohort bestows upon a different cohort (either voluntarily or as 
a result of a transfers scheme implemented by a planner): unlike bequests motivated 
by dynastic altruism, such transfers reflect the existence of potential individual 
gains from trading with adjacent generations (e.g. young and old agents may in-
crease private utility by trading education versus health care, long-lasting assets 
versus pensions) and may arise as political equilibria (Sjoblom, 1985) or as Pareto-
improving intergenerational contracts (Esteban and Sakovics, 1993) in the standard 
overlapping generations model with finite lives and selfish agents (Boldrin and 
Rustichini, 2000; Rangel, 2003; Boldrin and Montes, 2005). 

The following is a brief summary of the analysis. At first, the benchmark frame-
work of the competitive economy with complete markets (Complete Markets 
Allocation, CMA hereafter) and intergenerational transfers is developed. Consider a 
simple three-period economy in which young agents overlap with adult workers and 
retired old agents. A stock of resources is necessary1 for producing consumption 
goods and is initially owned by old agents under full property rights: resource assets 
are transmitted to the adult generation via a standard competitive market.2 As a 

1. A resource is defined as necessary if output is zero whenever the quantity of the resource used 
in production is zero, i.e. F (H, 0) = 0. 

2. In this environment, sustained consumption is not guaranteed: the market valuation of oil assets 
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factor of production, natural resources differ in essence from physical capital inas-
much as they are destroyed and get depleted rather than being accumulated through 
investment. Although natural resources that are essential for production are scarce, 
growth can be sustained through the accumulation of human capital that spills over 
across generations in the form of public knowledge. However, the knowledge stock 
only grows if old agents invest in the education of the newborn generation. This 
mechanism creates potential gains for intergenerational transfers independently of 
the problem of resource scarcity. An intergenerational transfer scheme financing 
education and pensions is therefore implemented by agents in the decentralized 
economy with complete markets (CMA). This benchmark framework is sub-
sequently simulated and compared with the case of incomplete markets allocation 
(IMA, hereafter) without transfers. This comparison highlights the substantial 
positive effects of intergenerational transfers on economic growth and constitutes 
the first contribution of this paper. 

The main contribution is summarized as follows. Intuitively and other things 
being equal, a higher resource regeneration rate would imply that one (natural cap-
ital) of the two productive factors of the economy (the other being labor) becomes 
more widely available. In turn, this would determine a factor reallocation away 
from labor and would call for a lower degree of human capital accumulation. If this 
were the mechanism at work, the higher regeneration rate would translate into a 
lower fraction of intergenerational transfers with respect to output (since education 
transfers are necessary to accumulate human capital). Generally, the intention is to 
fully investigate which mechanisms tend to prevail as a response to a change in the 
degree of resource renewability. The results show that a higher resource regen-
eration rate magnifies the volume and the positive effects of transfers on growth 
performances. This happens through the regeneration rate’s effects on the rate of 
return on resource wealth, resource use and output growth rate. Last but not least, 
from the analysis of the revenue side it is shown that the planner can replicate the 
CMA growth performances by implementing a period-by-period intergenerational 

limits the rate of depletion of the oil stock only to the extent that selling oil assets to the adults 
is actually profitable to the retiring agent. In other words, future generations may be bound to 
experience declining consumption levels because the distribution of resource wealth is in-
evitably biased in favor of the “first father”. More generally, neither sustainability nor resource 
preservation are guaranteed when natural capital is private property. This result holds in general 
equilibrium models with infinitely lived agents (Dasgupta and Heal, 1974), and is furthermore 
valid when assuming selfish agents with finite lifetimes (Mourmouras, 1991, 1993). 
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transfers scheme financed through lump-sum taxation.3 It is finally also shown that 
such a transfer policy can be financed through a constant lump-sum tax relative to 
the output level. 

The paper proceeds as follows: Section 2 introduces the model. The potential 
gains from implementing intergenerational transfers are shown by comparing the 
efficiency properties of the CMA (developed in Section 3) with the IMA 
(developed in Section 4) in which neither education to the young nor pay-as-you-go 
pensions to the old are implemented. In Section 5, I address the issue of how re-
source renewability affects the features of intergenerational transfers by simulating 
the model under different parameterizations and by implementing different taxation 
instruments. Section 6 concludes. 

 
2. The Model 

2.1 Production, Resources and Human Capital 

The production sector consists of an indefinite number of competitive firms that 
produce a homogeneous consumption good using human capital and a primary re-
source under constant returns to scale. Aggregate output is denoted by Yt in physical 
terms and is the numeraire good. The technology is a well-behaved production 
function displaying strictly decreasing marginal productivities and satisfying the 
Inada conditions: 

( )= , ,t t tY F H X                (1) 

where t ={0,1,2,…∞} is the period index in discrete time, t t tH h≡ 
 is aggregate 

human capital – given by the current stock of knowledge per worker ht times the 
number of workers t  –and Xt is resource use– i.e., a flow of primary resource 
extracted from a natural stock and destroyed in the production process. Denoting 
the wage rate by wt and the resource price by  tp , the profit-maximizing conditions 
imply: 

=    and   = ,t H t Xt t
w F p F          (2) 

where constant returns to scale ensure zero profits in the final sector. 
With respect to resource use, the analysis is inspired by the sustainability liter-

3. This result draws in part on Boldrin and Montes (2005), in which public financing of education 
and pensions is shown to be implemented by a transfer scheme and financed through a lump-
sum tax. However, the benchmark framework in Boldrin and Montes (2005) differs from the 
current model since they do not contemplate the use of natural resources as factor of production. 

                                                                 



R. IACONO, South-Eastern Europe Journal of Economics 2 (2014) 167-199 171 

 

ature (Dasgupta and Heal, 1974; Solow, 1974; Stiglitz, 1974): economic growth 
may be negative as a result of natural scarcity – a scenario that is surely compelling 
when the resource stock is non-renewable. However, for the sake of generality, I 
allow for the possibility of natural regeneration: the resource stock Rt obeys the 
dynamic law 

( )( )1 = 1 ,t t tR R X γ+ − +           (3) 

where 0γ  is a constant marginal rate of biological renewal. Setting = 0γ , 
equation (3) reduces to the standard law for exhaustible resources like oil and 
minerals. In each period, the part of the resource stock that is not destroyed in 
production constitutes resource assets, At, that will be used for production in the 
future: agents exchange shares of At on a perfectly competitive financial market. 
The resource stock thus equals, in each period: 

= .t t tR X A+                (4) 

The dynamics of aggregate human capital t t tH h≡ 
 and of individual knowledge 

ht are linked to the demographic structure, which comprises three overlapping 
generations: in each period t ={0,1,2,…∞}, there are y

tN  young, a
tN  adult and 

o
tN  old agents, with a constant exogenous population growth rate: 

1 1 1/ = / = / = 1 .y y a a o o
t t t t t tN N N N N N n+ + + +         (5) 

For simplicity, young agents do not work and do not consume: in the first period 
of life, t, each agent studies to acquire ht+1 units of knowledge that will determine 
her productivity as a worker during adulthood. In the second period of life, t+1, 
agents supply inelastically their human capital to the production sector. In the third 
period of life, t+2, agents do not work. The number of workers thus coincides with 
the mass of adults, = a

t tN
. Each worker’s knowledge is determined by the generic 

learning technology 

( )1 , , > 0,t
t t t

t

h h η
η ε

ε+

∂
≡

∂
          (6) 

where εt is the economy’s propensity to spend on education. Denoting by et  the 
investment per young person in education expressed in units of final output, and by 

= / y
t t ty Y N  output per young person, the education spending share can be rewritten 

as 
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.t
t

t

e
y

ε ≡            (7) 

Assume further that knowledge grows if and only if the economy spends a 
positive amount of output on education: when εt=0, human capital is constant at the 
previous level (for simplicity, we rule out knowledge depreciation over time). A 
convenient function that incorporates this hypothesis is 

1 = , = 1 ,t t
t t t

t t

e eh h h
y y

η µ+

   
⋅ +   

   
       (8) 

Where μ > 0 is a constant exogenous parameter reflecting the marginal impact of 
the propensity to spend on education for future knowledge growth. 

 
2.2  Household Behavior 

Assume that agents are homogeneous, endowed with perfect foresight, and selfish: 
each agent seeks to maximize her own lifetime utility. To simplify the discussion, 
the consumer problem is split into two logical steps. First, agents decide how to 
trade resource assets with adjacent generations in order to maximize the present-
value of net income from resource ownership. Second, the consumer decides how to 
allocate total lifetime income between consumption and savings when adult, and 
consumption when old. The reason for this distinction is that I will consider dif-
ferent variants of step two. 

Considering the first step, the typical adult in period t saves in the form of re-
source assets – i.e., she purchases from old agents a fraction 1/ a

tN  of At at unit price 
qt. In period t+1, the same agent is old, she owns a fraction 11/ o

tN +  of the existing 
resource stock Rt+1, and sells 1 1/ o

t tX N+ +  units as “resource use” to production firms 
at price 1tp + , and 1 1/ o

t tA N+ +  units as “resource assets” to adult agents at price qt+1. 
Consequently, the present value of net resource incomes over the life-cycle is 

1 1 1 1

1

1 ,
1

t t t t
t ta

t t

q A p X q A
N i

+ + + +

+

 +
⋅ − + 

       (9) 

where it+1 is the implicit rate of return on resource wealth. Given the resource 
constraints (3) and (4), the maximization of net resource income implies two basic 
conditions of no arbitrage (see the Mathematical Appendix for details). On the one 
hand, there must be price equalization between resource assets and resource use,    
pt=qt, in each period. On the other hand, the dynamics of resource rents must satisfy 
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the generalized Hotelling rule 
1 1 11= = ,

1
t t t

t t

p q i
p q γ
+ + ++

+
           (10) 

whereby the resource price grows (declines) over time if the rate of return exceeds 
(falls short of) the regeneration rate. If the natural stock is non-renewable, = 0γ , 
expression (10) declines to the standard Hotelling’s (1931) rule, according to which 
the resource price must grow at the rate of return in order to guarantee intertemporal 
no-arbitrage. These results allow us to define individual savings during adulthood 
as = / a

t t t ts q A N , associated to the gross return (1+it+1) in the subsequent period of 
life. 

In the second step, agents decide how to allocate total lifetime income between 
consumption and savings in order to maximize lifetime utility. Because young 
agents do not work and do not consume, preferences are defined over two periods 
only: the lifetime utility of the young born in period t−1 reads 

( ) ( ) ( )1 1 1, = ,t t t t tu c d v c v dβ− + ++ ⋅         (11) 

where ct is consumption when adult, dt+1 is consumption when old, ( )0,1β ∈  is the 
private discount factor, and ν(·) is a well-behaved utility function implying positive 
and strictly decreasing marginal utility, and satisfying the Inada conditions. 

Importantly, I can consider different specifications of the consumer problem 
depending on the structure of credit markets and the possible existence of inter-
generational transfers. The benchmark scenario (CMA) is a world in which there 
are complete credit markets: young agents are able to borrow in their first period of 
life the amount of output they wish to invest in education and they repay the debt at 
the prevailing interest rate during adulthood. The alternative scenario is represented 
by a world in which credit markets for education financing are missing, and the 
accumulation of human capital hinges on the existence of intergenerational transfers 
(IMA). In the next section, I present the complete markets allocation (CMA). 

 
3. The case of complete markets 

Suppose that there exist complete credit markets for education financing: each 
young agent born in period t−1 borrows bt-1 units of output for financing her 
education investment et-1, and repays the amount bt-1(l+it) during adulthood. 
Accordingly, the a

tN  adults in period t finance current education investment y
t tN b  

and receive, in the aggregate, ( )11y
t t tN b i ++  units during old age. Consequently, the 
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typical consumer maximizes utility (11) subject to 

( ) ( )1= 1 1 ,t t t t t t tc w h s b i b n−− − + − +           (12) 

( ) ( )( )1 1 1= 1 1 1 ,t t t t td s i b n i+ + ++ + + +          (13) 

( )1 1 1 1 1= , /    with   = ,t t t t t th h e y e bη − − − − −       (14) 

where (12) and (13) are the budget constraints for the second and third period of 
life, respectively, and (14) is the knowledge accumulation constraint where edu-
cation investment is determined by the initial debt, and the knowledge and labor 
productivity of the previous generation ( 1th −  and 1ty − ) are taken as given. The 
solution to this problem yields the conditions (see the Mathematical Appendix): 

( )
( ) 1

1

= 1 ,
'

t
t'

t

v c
i

v dβ +
+

+





           (15) 

( )1 1 1

1

, /
= 1 ,t t t

t t
t

h e y
w i

e
η − − −

−

∂
⋅ +

∂


 


         (16) 

where superscript ‘  ’ denotes equilibrium variables in the CMA, equation (15) is 
the usual Euler condition for consumption growth, and equation (16) establishes 
that the marginal private benefit from education investment –that is, the increase in 
wage income generated by higher individual knowledge– must match the private 
marginal cost of borrowing in the first period of life. Combining equations (15, 16) 
with the profit-maximizing conditions in the production sector (2) and the Hotelling 
rule (10), we can characterize the equilibrium arising under complete credit mar-
kets. It is essential to provide a full characterization of the CMA when preferences 
and technologies take simple forms that yield neat solutions for the equilibrium 
path. Consider the following: 
Log-linear model Production equals ( ) 1, =t t t tF H X H Xα α− , and static utility is   
ν(·)=ln(·). 

In the log-linear model, the simplifying role of Cobb-Douglas production tech-
nology and logarithmic utilities is obvious and well-established in the growth liter-
ature: output, resource use and human capital will all grow at constant growth rates 
in each period t ={0,1,2,…∞}. The competitive equilibrium with complete markets 
is characterized as follows (full derivation of equilibrium characterization in the 
Mathematical Appendix): 
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Remark 1 A competitive equilibrium with complete markets is defined by (10, 
15, 16); by the aggregate constraint and focs (17); by the propensities to invest in 
human capital (18) and to consume (19); by the equilibrium interest rate (20) and 
by the growth rates of aggregate human capital (21), resource use (22) and output 
(23): 

( ), = , =    and   = ,y a o
t t t t t t t t t H t Xt t

F H X N e N c N d w F p F+ +       (17) 

11= ,
y

t t t t

t t

N e h h
Y hµ

+ −
⋅

  

 
         (18) 

( ) ( ) ( ) ( )22
= , = ,

(1 ) 1 1 (1 ) 1 1

a o
t t t t

t t

N c N d
Y Yn n

α βα
β µε β µε+ + + + + +

 

  

   (19) 

( ) ( ) ( )11 = 1 ,i α ααµ γ −+ +        (20) 

( )( )1 = 1 1 ,t

t

H n
H

µε+ + +





        (21) 

( )( )1 1= 1 1 ,t

t

X n
X

γ µε
αµ

+ +
+ +





          (22) 

( ) ( )
1

1 1= 1 1 .t

t

Y n
Y

α
γ µε

αµ

−

+  +
+ + 

 





       (23) 

 
This equilibrium defines the dynamic system 1 1 1 1: ( , , , ) ( , , , )t t t t t t t te h y X e h y X− + + +Φ 

        . 
Given initial conditions ( 1 1 1 0, , ,t t te h y X− − −

    ) and parameters ( , , , ,nα β µ γ ), the system 
Φ evolves along the equilibrium path { }1 1 1 =0

( , , , )t t t t t
e h y X

∞∗ ∗ ∗ ∗
+ + +

; given this equilibrium 
path all remaining factor prices and quantities are determined.  

As is shown in (20) in Remark 1, the equilibrium interest rate factor ( )1 i+   
turns out to be a constant weighted average of the regeneration rate γ  and of the 
marginal impact of the propensity to spend on education μ. The intuition behind this 
result is that a higher regeneration rate γ would allow a more sustainable resource 
use, postponing stock depletion and thereby contributing to providing a higher gross 
return on resource wealth. 

 
4. The incomplete markets allocation 

In this section the allocation with incomplete markets (IMA) is developed. Suppose 
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therefore that credit markets for education financing are missing or incomplete: 
young agents are not able to borrow to finance their education. Consequently, inter-
generational transfers do not take place and the economy moves to an inefficient 
equilibrium. More precisely, (16) is now violated and profitable investment in 
human capital cannot any longer be achieved. The typical consumer will now 
maximize utility (11) subject to 

= ,t t t tc w h s−            (24) 

( )1 1= 1 ,t t td s i+ ++          (25) 

1= ,t th h −              (26) 

where (24) and (25) are the budget constraints for the second and third period of 
life, respectively, and (26) is the knowledge accumulation constraint anchored at a 
given past value. The solution to this problem yields the following conventional 
Euler condition for consumption growth (see the Mathematical Appendix): 

( ) ( ) ( )1 1= 1 .' '
t t tv c i v dβ + ++         (27) 

Assuming a log-linear model as in the CMA case and combining equation (27) 
with the profit-maximizing conditions in the production sector (2) and the Hotelling 
rule (10), we can characterize the equilibrium arising under incomplete credit mar-
kets. Let us start to observe that, absent any educational expenditure allowing the 
young generation to invest in education and accumulate human capital, the growth 
rate of human capital will no longer be endogenously determined by the model: 

( )
#

1 1 1 1
# = = 1 = (1 ),t t t t

t t t t

H h hn n
H h h

+ + + ++ +




          (28) 

where superscript ‘ # ’ denotes equilibrium variables in the IMA. The absence of 
intergenerational transfers due to incomplete markets determined a slow-down in 
human capital accumulation with respect to the CMA allocation, creating a source 
of inefficiency. Human capital accumulation is however still positive due to popul-
ation growth. The equilibrium characterization for the IMA is summarized as fol-
lows (full derivation of equilibrium characterization in the Mathematical Appen-
dix): 
 

Remark 2 A competitive equilibrium with incomplete markets is defined by (10, 
27); by the aggregate constraint and focs (29); by the propensities to consume (30); 
by the equilibrium interest rate (31) and by the growth rates of aggregate human 
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capital (32), resource use (33) and output (34): 
# # # #( , ) = , =    and   = ,a o

t t t t t t t t H t Xt t
F H X N c N d w F p F+   (29) 

# #

# #

1= , = ,
1 1

a o
t t t t

t t

N c N d
Y Y

α β α
β β

+ −
+ +

         (30) 

( ) ( ) ( )1# 1 (1 )
1 = 1 ,

n
i

α
αβ α

γ
αβ

− + − +
+ + 

 
      (31) 

#
1

# = (1 ),t

t

H n
H

+ +          (32) 

( )
#

1
# = 1 ,

1
t

t

X
X

αβ γ
β α

+ +
+ −

        (33) 

( ) 1#
1

#

1
= (1 ) .

1
t

t

Y n
Y

α

α αβ γ
β α

−

+
 +

+  + − 
        (34) 

This equilibrium defines the dynamic system # # # # # #
1 1 1: ( , , ) ( , , )t t t t t th y X h y X+ + +Ω  . 

Given initial conditions ( # # #
1 1 0, ,t th y X− − ) and parameters ( , , ,nα β γ ), the system Ω 

evolves along the equilibrium path { }1 1 1 =0
( , , )t t t t
h y X

∞∗∗ ∗∗ ∗∗

+ + +
; given this equilibrium 

path all remaining factor prices and quantities are determined. 
As is shown in (31), this time the interest rate factor (l+i#) turns out to be a 

constant weighted average of the regeneration rate γ and of the population growth 
rate n. Relatively to the CMA benchmark allocation, the impossibility of financing 
education limits human capital accumulation and has detrimental effects on the 
long-run growth scenario for the economy. An estimation of the magnitude of this 
detrimental effect will be computed in the next section on resources and inter-
generational transfers. 

 
5. Resources and intergenerational transfers 

The scope of this section is threefold. At first, the dynamics of resource use is 
presented (Section 5.1). Later on, I proceed by simulating the gap in growth perfor-
mances between the CMA and the IMA induced by intergenerational transfers and 
the effects on this gap induced by a higher resource regeneration rate (Section 5.2). 
In conclusion, the interaction of lump-sum taxation with resource regeneration rate 
and growth performances is explored (Section 5.3). 
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5.1  Resource use dynamics 

Before specifying parameters and initial conditions of the calibration exercise, let us 
show the framework in which the different levels of the regeneration rate γ  will be 
inserted. Starting from the accumulation law (3) and iterating the stock equation we 
obtain: 

1

0
0

= (1 ) (1 ) .
T

T T t
T t

t
R R Xγ γ

−
−

=

+ − +∑        (35) 

Next, consider the resource use dynamics: for CMA and IMA we have that Xt  
grows at constant rates which we redefine as ∆  and #∆ . Therefore, we have in 
general that 1 =t tX X+ ∆ ⋅  so that 0= t

tX X∆ ⋅ . Substituting this into the resource 
constraint and rearranging we have 

1

0 0
=0

(1 ) = .
1

tT
T

T
t

R R Xγ
γ

−
−  ∆

+ −  + 
∑        (36) 

An important condition to be imposed is the following transversality condition, 
not allowing the stock to grow faster than the regeneration rate: 

(1 ) = 0,lim T
T

T
R γ −

→∞
+             (37) 

from which we get 
 
 (38) 

 
 
Note that in order to obtain a solution we must have < 1

1 γ
∆
+

. This is certainly 

true in the IMA since from (33) we observe that 
#

= < 1
1 1

αβ
γ β α

∆
+ + −

. In the CMA 

equilibrium instead, (22) implies that (1 )(1 )=
1

n µε
γ αµ

∆ + +
+

  , which satisfies < 1
1 γ
∆
+

  if 

and only if 
> (1 )(1 ).nαµ µε+ +              (39) 

This inequality has to be strictly verified in order for the model to exhibit a 
solution. In other words, if and only if the joint choice of parameters (ε  , μ) in the 
parameterization below satisfies the inequality (39), we can finally obtain the initial 
rate of resource use for all allocations: 

1

0 0 0
0

1= = .lim 1 1
1

tT

T t
R X X

γ
γ

−

→∞ =

 ∆
  ∆+  −

+

∑
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0 0
1= .

1
X Rγ

γ
+ − ∆
+

          (40) 

Given endowments R0,H0, and the CMA and IMA’s resource use dynamics ∆  
and Δ#, we can therefore obtain the initial values of Χ0 and output since 

0 0 0= ( , )Y F H X . After that, it will be possible to compare the gaps between the 
constant growth rates of output for the different allocations. 

 
5.2  A simulation of the economic effects of transfers 

This subsection calibrates the model in order to simulate the economic effects of 
transfers when a jump in the resource regeneration rate occurs. The model is 
parameterized as if each time interval ( , 1t t + ) would be equal to 25 years. This 
time span is realistically sufficient to allow the young generation at t to grow adult 
at t+1 and later on to become old at t+2. As regards the share of human capital in 
production, assume α=0.85. The corresponding share of resources is then 
(1−α)=0.15.4 In order to obtain an implicit corresponding annual level of β=0.98 we 
have to set the generational private discount factor at β=0.61. The growth of 
population is set without loss of generality at the lower bound n=0. For both 
allocations, the initial level of human capital has been arbitrarily set at H0=10, 
whilst the initial resource stock is endowed with an amount of resource given by 
R0=100.5 

As regards the resource regeneration rate γ ≥ 0, I intend to compare two cases: 

= 0.5,lowγ              (41) 

= 0.8.highγ              (42) 

In other words, I intend to evaluate the effects of a 60 percent increase in the 

4. α=0.85 and (1−α)=0.15 are commonly used shares within the literature of growth models for 

resource-rich economies with no physical capital (Valente, 2008, 2011). 

5. A numerical exercise provided the range of values for ( ,ε µ ) which satisfies simultaneously 

the stationarity condition for ε   given in the Mathematical Appendix and the inequality given 

in (39). The Maple code for this numerical exercise is available on request. Within this range of 

values for ( ,ε µ ), the pair ( = 0.012577;ε   μ = 1.8) was chosen in order to prioritize acceptable 

values for the equilibrium interest rates. 
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resource regeneration rate on intergenerational transfers and growth performances.6 
The following tables present and summarize the results,7 which are discussed in 
more detail below: 

 
CMA i  Annual i  0X   g    

= 0.8highγ  0.5255 0.0170  55.44  0.0196  (43) 
= 0.5lowγ  0.5678  0.0181  33.16  0.0478   

 
IMA #i  Annual #i  #

0X  #g   
= 0.5highγ  0.4709  0.0156  54.51  0.0035  (44) 

= 0.5highγ  0.5116  0.0167  31.77  0.0312
 

 

  

in which 1= 1t

t

Yg
Y
+ −





 and 
#

# 1
#= 1t

t

Yg
Y
+ − . 

 

5.2.1  The case of = 0.5lowγ  

At first, let us verify that the allocations indeed exhibit interior solutions. The con-
stant values for the interest rates (time indexes are thereby dropped) for the CMA 
and IMA allocations are given respectively by i  = 0.5255 and i# = 0.4709, ensuring 
the presence of interior solutions. These are generational interest rates on a time 
span of 25 years and they correspond respectively to i  = 0.0170 and i# = 0.0156 on 
a yearly basis. Following the procedure presented in the previous subsection 5.1, 
endowments R0 and H0 together with the resource-use dynamics in the CMA and 
IMA allow us to obtain the initial values of 0X , given by 0 = 55.44X   and 

#
0 = 54.51X . Subsequently, by recalling that 0 0 0= ( , )Y F H X , we can simply simul-

ate output time series. The following Figure 1 shows output time series (in levels, 

6. A few more words are needed in order to fully justify the choice of these specific regeneration 
rate levels. Note that the above mentioned values for the parameters α, β, n  imply that the IMA 
exhibits approximately negative output growth for γ ≤ 0.46. The lower threshold of the resource 
regeneration rate has therefore been set at γlow=0.5 in order to make a comparison between 
allocations implying exclusively positive growth rates. 

7. The MATLAB code used for this simulation is available from the author on request. 
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left-hand side) for CMA (solid line) and IMA (dashed line) and the positive output 
gap (also in levels, right-hand side) that intergenerational transfers create between 
the two allocations:  

 
Figure 1: The case of lowγ  

 

More interestingly, we can observe the results in terms of constant growth rates. 
The constant growth rate of income for the CMA allocation is given by = 0.0196g  , 
whilst for the IMA we have # = 0.0035g . As expected, the poorer growth perfor-
mance of the IMA is due to the impossibility of financing education and the sub-
sequent limited growth in human capital accumulation. This initial result can be 
summarized as follows: 

Remark 3 Given the regeneration rate level lowγ , the economic effects of inter-
generational transfers are estimated by the positive gap in growth rates given by 
the difference between g   and #g . 

Let us now move to the alternative scenario and observe how these growth rates 
and the transfers scheme will respond to a higher regeneration rate. 
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5.2.2  The case of = 0.8highγ  

Higher resource regeneration rate γ implies at first that the rate of return on resource 
wealth is increased. The constant values for the interest rates are now given respect-
ively by i  = 0.5678 and i# = 0.5116, that correspond respectively to i  = 0.0181 
and i# = 0.0167 on a yearly basis. In addition, the initial values of Χ0 are now given 
by 0 = 33.16X   and #

0 = 31.77X  indicating a more sustainable resource depletion path 
than under lowγ . As anticipated above, the intuition behind these results is that a 
higher regeneration rate γ makes it possible to postpone resource depletion and 
thereby contributes to providing a higher gross return on resource wealth, as can be 
observed in both (20) and (31). The following Figure 2 shows the output series 
(left-hand side, again solid line for the CMA and dashed for the IMA) and the out-
put gap (right-hand side) between the two allocations, for the case of highγ : 

Figure 2:  The case of highγ  

 
The constant income growth rate for the CMA allocation jumped to g  =0.0479, 

whilst for the IMA it increased to g#=0.0313. The intuition for the mechanisms 
driving this result goes as follows. A higher resource regeneration rate γ implied 
more abundant resources and higher rates of return on resource wealth. Now, for the 
CMA allocation the latter determined larger transfers, as can be seen in (12) and 

5 10 15 20
10

12

14

16

18

20

22

24

26

28

30
Gamma (high)=0.8

Time

O
ut

pu
t C

M
A 

& 
IM

A 
(le

ve
ls)

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10
Gamma (high)=0.8

Time

O
ut

pu
t g

ap
 C

M
A-

IM
A 

(le
ve

ls)



R. IACONO, South-Eastern Europe Journal of Economics 2 (2014) 167-199 183 

 

5 10 15 20
1

2

3

4

5

6

7

8
Gamma (low) & (high)

Time

O
ut

pu
t g

ap
 C

M
A-

IM
A 

(le
ve

ls
)

5 10 15 20
0

0.5

1

1.5

2

2.5

3
Transfers effect (levels)

Time

D
iff

er
en

ce
 in

 o
ut

pu
t g

ap
s

5 10 15 20
0

1

2

3

4

5
Gamma (low) & (high)

Time

O
ut

pu
t C

M
A 

& 
IM

A 
(g

ro
w

th
 ra

te
s,

 %
)

5 10 15 20
1.6

1.62

1.64

1.66

1.68

1.7
Transfers effect (growth rates)

Time

G
ap

 in
 g

ro
w

th
 ra

te
s 

(%
) 

(13). Larger intergenerational transfers imply stronger human capital accumulation 
which, combined with more abundant resources, boosted economic growth as 
summarized by the analytical formulation in (23). On the other hand, higher growth 
rate for the IMA was simply determined by more abundant resources as shown in 
(34). This unbalanced impact on growth rates implies that the gap in growth 
performances between the CMA and IMA allocations induced by the transfers has 
increased with the new regeneration rate highγ . 

In order to visualize this result, Figure 3 plots (in levels in the upper-left plot and 
in growth rates in the lower-left plot) the output gaps between allocations for 
different levels of γ (dashed lines for lowγ , solid for highγ ); jointly with the 

“Transfers effect” series (in levels in the upper-right plot and in growth rates in the 
lower-right plot) which show the period-by-period difference between them: 

 
Figure 3 

The series in Figure 3 show a positive effect of intergenerational transfers on the 
output gaps between allocations (both in levels and in growth rates) in response to a 
higher resource regeneration rate γ. In conclusion, Figure 3 and this subsection 
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more generally have shown that: 

Remark 4 Other things being equal, a higher resource regeneration rate γ  bo-
osts the positive effect of transfers on economic growth for both allocations, al-
though it also implies a higher gap in growth performances between them. 

Interestingly, it can also be investigated whether intergenerational transfers in-
creased as well as a fraction of total output. This is precisely one of the objectives 
of the next section in which financing of the transfers scheme is analyzed. 

 
5.3  The revenue side: financing transfers 

Let us now go into more detail about how the intergenerational transfers scheme 
actually works. In a parallel way to the theoretical result obtained by Boldrin and 
Montes (2005), I will show that the CMA equilibrium and efficiency can be fully 
implemented by the planner through a period-by-period scheme of intergenerational 
transfers financed through a lump-sum tax. 

In each period t, a lump-sum tax τt is levied on adults and revenues Πt(τt) are 
subsequently utilized to finance pensions to the old and education to the young. On 
the expenditure side, define ( , )P E

t t tZ z z  as the total expenditure for transfers respect-
ively of (PAYG) pensions P

tz  and education E
tz . Consider the following govern-

ment budget, balanced at any point in time: 

( ) = ( , ), ,E P
t t t t tZ z z tτΠ ∀         (45) 

= .a y E o P
t t t t t tN N z N zτ⋅ ⋅ + ⋅          (46) 

The budget constraints for the representative agent born in period t−1 would 
then read: 

1 1,=t te b− −             (47) 

= ,E P
t t t t t tc w h s z z − − +              (48) 

( )( )1 1= 1 .P
t t t td i s z+ ++ +            (49) 

Let us now compare (47-49) with the constraints faced by the representative 
member in the CMA allocation (12-14) and observe that, as long as pensions 

P
tz  

and education transfers E
tz are defined exactly as follows: 

( ) ( )1= 1 , = 1 .P E
t t t tz b n z e i−+ +           (50) 
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then the competitive equilibrium under the transfer policy achieves again the ef-
ficiency level of the CMA allocation. 

Once the feasibility of introducing intergenerational transfers financed through a 
lump-sum tax has been assured, let us now investigate whether and how resource 
regeneration rate interacts with the transfer scheme (50). Recalling from the model 
calibration in the previous subsections that the growth of population has been set at 
the lower limit n = 0, let us therefore further assume without loss of generality that 
the mass of young, adult and old individuals is given by = = = 1y a o

t t tN N N . This 
implies that (46) simplifies to ( )1= = 1P E

t t t t tz z b e iτ −+ + +  . By dividing both sides 
for ty  we obtain:  

( ) ( ) ( )1 1 1= 1 = 1 = 1 1 ,t t t t t

t t t t t

b e y yi i i
y y y y y
τ εε ε− − − ⋅

+ + + + + + 
 

   
    

    
      (51) 

Now recall (20) and (23); inserting back into t

ty
τ


 provides: 

= 1 .
1

t

ty
τ αµε

µε
 
+ + 


 

        (52) 

This result can be summarized as follows: 
 
Remark 5 The intergenerational transfer scheme given by (50) can be financed 

through a constant lump-sum tax relative to the output level t

ty
τ


, as shown in (52).  

In other words and for the case of transfers financed through lump-sum tax, 
higher resource regeneration rate does not influence the relative fraction of output 
devoted to their financing. To what extent was this result expected? Recall (18) in 
which the propensity to invest in human capital with respect to income was found 
not to be a function of the equilibrium interest rate. Now, the simulation of the 
previous subsection showed that the resource regeneration rate influences the levels 
of transfers only through its effect on the equilibrium interest rate. It is therefore 
straightforward to logically infer that (at least for the current case of lump-sum 
taxation) the propensity to invest in human capital (18) in respect to output does not 
vary in response to the resource regeneration rate γ. 
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6. Concluding remarks 

This paper presented a model of a closed economy with overlapping generations of 
selfish agents, natural resources and human capital externalities. Resources are as-
sumed to be necessary for production of consumption goods, they are initially 
owned by old agents and further transmitted to the adult generation via a standard 
competitive market of resource assets. Intuitively, natural resources differ from 
physical capital as a factor of production since they are gradually depleted rather 
than being accumulated through investment. 

The question becomes then how to sustain economic growth in the longer run. 
Although natural resources that are essential for production are scarce, growth can 
be sustained through the accumulation of human capital that spills over across 
generations in the form of public knowledge. The crucial point is that the know-
ledge stock only grows if old agents invest in the education of the younger gen-
eration. This mechanism creates potential gains for intergenerational transfers in-
dependently of the problem of depleting resources. An intergenerational transfer 
scheme financing education for the young and pensions for the old is therefore im-
plemented voluntarily by agents in the competitive economy with complete mar-
kets. The first step was to analytically pin down the properties of this bench-mark 
framework. 

I proceeded by supposing that credit markets for education financing are instead 
missing or incomplete: young agents are no longer able to finance their education. 
Consequently, intergenerational transfers do not take place and the economy moves 
to an inefficient equilibrium. This framework was labeled as the IMA and was 
described in detail. The initial result was to quantify the substantial positive effects 
of transfers on economic growth. This was done by comparing (for a given level of 
the resource regeneration rate) the complete markets allocation with intergen-
erational transfers to the incomplete markets allocation without transfers. 

The core contribution of the paper was then to investigate whether and how the 
degree of resource renewability influences intergenerational transfers. The qual-
itative intuition behind this question goes as follows. A higher resource regener-
ation rate implies that one of the two productive factors of the economy becomes 
more abundant. How does this variation impact the features of transfers, their 
effects on the growth performances between allocations and ultimately the fraction 
of output needed to finance them? The results showed that a higher resource re-
generation rate γ expands the positive effects of transfers on growth performances 
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for both allocations but also on the gap in output growth rates between them. In 
addition, it is shown that transfers are financed at any point in time through a 
constant lump-sum tax relative to the output level. Notwithstanding their beneficial 
effects on economic growth, this means that whenever the degree of resource 
renewability varies, financing transfers does not employ a higher/lower fraction of 
output. 

Let us now outline some possible directions for future research in this area. At 
first, considering different and more realistic taxation instruments to finance 
transfers might increase the variety and robustness of results for the benchmark 
framework developed in the current paper. Another natural step forward would be 
to ask what is the other side of the story. In other words, to look at how intergen-
erational transfers between generations of selfish agents affect the speed of resource 
depletion. Using a somewhat different framework from that of the current paper, 
Valente (2008) analyzed this problem in an overlapping generations model in which 
natural capital is owned by selfish old agents. He shows that transfers from old to 
young agents have the effects of increasing growth for all generations (except that 
of the first resource owner) and reducing the rate of resource depletion, hence pre-
serving sustainability. A thorough theoretical analysis of these and related aspects 
combined with an empirical application regarding specific resource-rich economies 
would qualify as an interesting complementary study to the current paper. 
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MATHEMATICAL APPENDIX 

1.  No-arbitrage and Hotelling rule 

1.1 No-arbitrage conditions and Hotelling rule: derivation of (10). Starting from 
expression (9), substitute the physical resource constraint (4) as 1 1 1=t t tX R A+ + +−  to 
obtain 

1 1 1 1 1 1

1 1

1 .
1 1

t t t t t t
t ta

t t t

q A p A p R q A
N i i

+ + + + + +

+ +

 −
⋅ + − + + 

 

Combining (4) with (3), substitute Rt+1=At (1+γ) in the above expression to 
obtain 

1 1 1 1
1

1 1

1 1 .
1 1

t t t t
t t t ta

t t t

q A p A p A q A
N i i

γ+ + + +
+

+ +

 − +
⋅ + − + + 

         (53) 

Maximizing (53) with respect to Αt+1 yields the static no-arbitrage condition 

1 1=t tq p+ + . Maximizing (53) with respect to Αt and substituting 1 1=t tp q+ +  yields 
the generalized Hotelling rule (10) in the text. 

 
2.  Complete markets: full equilibrium characterization 

2.1 Consumer Problem. Under complete credit markets, the typical young agent 
born in period t−1 maximizes utility (11) subject to (12, 13, 14) taking ht−1 and yt−1 
as given and using ( )1 1, , ,t t t tc d s b+ −  as control variables. The problem can be sim-
plified as follows. Substituting ht in (12) by means of (14) and using (13) to 
eliminate st from the resulting expression yields the lifetime budget constraint 

( ) ( )1
1 1 1 1

1

= , , 1 .
1

t
t t t t t t t

t

dc w h e y e i
i

η+
− − − −

+

+ − +
+

      (54) 

Maximizing (11) subject to (54) using ( )1 1, ,t t tc d e+ −  as control variables, the 
Lagrangian reads 

( ) ( ) ( ) ( ) 1
1 1 1 1 1

1

, , 1 ,
1

t
t t t t t t t t t

t

dL v c v d w h e y e i c
i

β λ η +
+ − − − −

+

 
≡ + ⋅ + − + − − + 

 

and the first-order conditions = 0
tcL , 

1
= 0

tdL
+

 and 
1

= 0
teL
−

 yield equations 

(15) and (16) in the text. 
2.2 Equilibrium characterization. I will proceed to demonstrate that, in the log-
linear model, output, resource use and human capital all grow at constant growth 
rates in each period t ={0,1,2,…∞}. Given the assumed learning technology (8), the 
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partial derivative with respect to education reads 
( )1 1 1 1

1 1

, /
= .t t t t

t t

h e y h
e y

η
µ− − − −

− −

∂
⋅

∂




          (55) 

Consequently, the utility-maximizing condition for education investment  
(16) implies 

( ) 1

1

1= 1 ,t
t t

t

yw i
hµ

−

−

+ ⋅            (56) 

so that the growth rate of wages is 

1 1 1 1 1

1 1

1 1= = .
1 1

t t t t t t t

t t t t t t t

w i y h i Y H
w i y h i Y H

+ + − + −

− −

+ +
⋅ ⋅ ⋅ ⋅

+ +

    

    
    (57) 

Results (56) and (57) are the crucial relationships telling us that, under the 
assumptions of the log-linear model, the economy exhibits constant growth rates of 
output and inputs in each period, from time zero to infinity. First, consider resource 
use. From the profit-maximizing condition on resource use in (2), the Hotelling rule 
(10) can be written as 

1 1

1

1= .
1

t t

t t t

X Y
X Y i

γ+ +

+

+
⋅
+

 

  
        (58) 

Similarly, from the profit-maximizing condition on human capital in (2), the 
growth rate of wages is 

1 1

1

= ,t t t

t t t

w Y H
w Y H

+ +

+

⋅
  

  
         (59) 

where we can substitute (57) to obtain 

1 1

1 1 1

1 1= .
1 1

t t t t

t t t t t t

Y H Y H
i Y H i Y H

− +

− + +

⋅ ⋅ ⋅ ⋅
+ +

   

     
      (60) 

Hence, defining the convenient variable 

1
1

1

1 ,
1

t
t

t t

Y
i Y

φ +
+

+

≡ ⋅
+



 
         (61) 

we can re-write the growth rates of inputs (58) and (61) as 

( )1
1= 1 ,t

t
t

X
X

γ φ+
++ ⋅




          (62) 
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1 1

1

= .t t t

t t t

H H
H H

φ
φ

+ +

−

⋅
 

 
         (63) 

The crucial step to show that these growth rates are constant over time is to 
combine the utility-maximizing condition for education investment (16) with firms’ 
demand for human capital – that is, the profit-maximizing condition on human 

capital in (2). In fact, combining ( ) 1

1

1= 1 t
t t

t

yw i
hµ

−

−

+ ⋅   with = t
t

t

Yw
H

α





, and recal-

ling that 1 1

1 1

=t t

t t

y Y
h H

− −

− −

, we can eliminate the wage rate and rearrange terms to get 

1 1

1 1= = .
1

t t
t

t t t

H Y
H Y i

φ
αµ − −

⋅ ⋅
+

 


          (64) 

Substituting this result into (63) we obtain 

1
1= .t

t
t

H
H

αµ φ+
+⋅




         (65) 

2.3 Equilibrium value of the interest rate. Now, the growth rate of output is by 
definition equal to 

1

1 1 1= .t t t

t t t

Y H X
Y H X

α α−

+ + +   
   
   

  

  
        (66) 

Starting from (66), let us substitute the growth rates of human capital and re-
source use by means of (65) and (62), to obtain an expression that only contains 

1t

t

Y
Y
+



 and 1tφ + : 

[ ] ( ) ( ) ( )1 11
1 1 1= 1 = 1 .t

t t t
t

Y
Y

αα α ααµ φ γ φ αµ γ φ
− −+

+ + + ⋅ + ⋅ + 



   (67) 

Therefore, we can utilize (61) and solve for the interest factor: 

( ) ( ) ( )11 = 1 .i
α ααµ γ −

+ +         (68) 
Hence the interest rate factor ( )1 i+   turns out to be a constant weighted aver-

age of the regeneration rate and of the marginal impact of the propensity to spend 
on education. But then, since the interest rate factor is constant in every period, 
output, resource use and human capital will grow at constant rates in every period 
as well. 
2.4 Equilibrium value of the propensity to invest in education. To find the equilib-
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rium propensity to invest in education, we need to follow a few sub-steps. At first, I 
obtain the aggregate budget constraint of the economy (a), total consumption of 
adult agents (b), total investment in education (c) and total consumption of old 
agents (d): 

(a) the aggregate budget constraint of the economy. Substituting 1 1=t tb e− −
  in 

each period as well as the definition of aggregate savings of the adult =a
t t t tN s q A  

in the budget constraints (12) and (13), the CMA is characterized by 

( ) ( )1= 1 1 ,a a a a
t t t t t t t t t t tN c w h N q A N e i N e n−− − + − +           (69) 

( ) ( )( )1 1 1= 1 1 1 .o o
t t t t t tN d q A i N e n i+ + ++ + + +           (70) 

Notice that setting (70) at time t  and using the Hotelling rule (10), we have 

( )( )1= 1 1 .o o
t t t t t t t tN d q A p X N e n i−+ + + +             (71) 

Hence, summing the aggregate consumption levels of adult and old agents, we 
obtain 

( )= 1 ,a o a a
t t t t t t t t t t tN c N d w h N p X N e n+ + − +        

where we can substitute =a
t t t t t tw h N p X Y+      in view of constant returns to scale, 

and write the aggregate expenditure constraint of the economy as 

= .y a o
t t t t t t tY N e N c N d+ +            (72) 

(b) total consumption of adult agents. Re-arranging terms in (70) we obtain 

( ) 1 1
1 1 = ,

1

o
o t t

t t t t
N dq A N e n

i
+ +

++ +
+


  


       (73) 

which can be substituted in (69) to get 

( )1
1= 1 .

1
t

t t t t
dc w h e i

i
+

−+ − +
+


    


           (74) 

In the log-linear model, the utility function v(·) = ln(·) implies that the Euler 
condition (15) reduces to 

1 = .
1

t
t

d c
i

β+

+





          (75) 

Substituting (75) in (74) yields 

( )1 1
= .

1
t t t

t

w h e i
c

β
−− +

+

   
         (76) 
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Notice that, multiplying both sides of (56) by th  and substituting the learning 

technology (8), we obtain 

( ) ( )1 1
11 = 1 .t t t tw h e i i y
µ− −− + ⋅ + ⋅           (77) 

Substituting (77) in (76), we obtain 

( ) 1
1= .

1t t
ic y
β µ −
+

⋅
+ ⋅


         (78) 

Multiplying both sides of (78) by 1=a y
t tN N −  we obtain the total consumption of 

adult agents 

( ) 1
1= .

1
a
t t t

iN c Y
β µ −
+

⋅
+ ⋅


           (79) 

(c) total investment in education. From the learning technology (8), we have 

11= ,t t t

t t

e h h
y hµ

+ −
⋅

  

 
         (80) 

so that, multiplying both sides of (80) by 
y

tN , we obtain the economy’s total 
expenditure in education as 

11= .y t t
t t t

t

h hN e Y
hµ

+ −
⋅ ⋅

 
 


        (81) 

(d) total consumption of old agents. From (75) we have 

( )1= 1 ,t td c iβ− ⋅ +    

( )1 1= 1 ,o a
t t t tN d N c iβ− − ⋅ +    

where we can substitute equation (79) to obtain total consumption of old agents 

( )
( )

2

2

1
= .

1
o
t t t

i
N d Y

β

µ β −

+
⋅

+


          (82) 

The next step: substitute total consumption of adult agents (b), total investment 
in education (c) and total consumption of old agents (d) into (a) and divide by out-
put, obtaining propensities and therefore an expression linking output growth to 
human capital growth. Substitute (79), (81) and (82) into the aggregate constraint 
(72) obtaining 

= ,y a o
t t t t t t tY N e N c N d+ +           (83) 
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( )
( )
( )

2

1
1 2

11 1= ,
1 1

t t
t t t t

t

ih h iY Y Y Y
h

β

µ β µ µ β
+

− −

+− +
⋅ ⋅ + ⋅ + ⋅

+ ⋅ +

  
   


     (84) 

which, recalling the definition 
1

1=
1

t
t

t

Y
i Y

φ
−

⋅
+



 
, can be rearranged as 

1

1

1 1 1 1= 1 .
1 1

t

t t t t

h
h

βµ
β φ β φ φ

+

−

+ − ⋅ − ⋅ ⋅
+ +




      (85) 

Because 1
1=t

t
t

H
H

αµ φ+
+⋅




 by (65), I can substitute 

1
1

1 2

1 1= and = ,t t
t t

t t

h hn n
h h

φ φ
αµ αµ

−
−

− −

+ +
⋅ ⋅

 

 
       (86) 

to obtain 

( )( )
( )

( )( )

2
1

2
1

1 2 1

1 1 1= 1 .
1 1 1 1

t

t t tt

t t t

h
h h hh n n
h h h

αµ βαµµ
β β

+

−

− − −

+ − ⋅ − ⋅ ⋅
+ + + +



  

  

    (87) 

Recall that the learning technology (8) defines 1t

t

h
h
+



 as a function of the pro-

pensity to spend in education, 

( )1 = 1 .t
t t

t

h
h

µε ε+ + ≡ Λ



        (88) 

As a consequence, rewrite (87) as 

( )
( )( ) ( )

( )
( )( ) ( ) ( )

2

2
1 1 2

1 1 1
= 1 .

1 1 1 1
t

t t tn n

αµ βαµ
ε µ

β ε ε εβ− − −

Λ + − ⋅ − ⋅ ⋅
+ + Λ Λ Λ+ +

 (89) 

Equation (89) exhibits a steady state ε   determined by the stationarity condition 

( ) ( )( ) ( )
( )

( )( ) ( )

2

2 2
1 1= 1 .

1 1 1 1n n

αµ βαµε µ
β ε β ε

Λ + − ⋅ − ⋅
+ + Λ + + Λ


 

      (90) 

This steady state is unstable:8 if we start from 0ε ε≠   at time zero, the dynamic 

8. Importantly, note that the fact that equation (89) is an unstable (second-order) difference 

equation is good news: it implies that there exists one and only one value of =tε ε   that is 

consistent with a bounded propensity to invest in education 0˂εt˂1 in each t ={0,1,2,…∞}. If 

(89) were stable around some long-run steady state =limt tε ε→∞  ( )0,1∈ , agents could choose 

any initial value ε0 at time zero, and then let the subsequent values ε1, ε2, assume the values 

dictated by equation (89), to end up with the long-run propensity ( )0,1ε ∈ . But then, the whole 
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equation brings all subsequent values of εt away from the steady state ε  , implying 
 either εt = 0  or  εt = 1  at some finite time t. (91) 

Is (91) possible in equilibrium? No. Given that I have shown that the interest 
rate is constant in each period, from time zero to infinity, it must be the case that the 
propensity to invest in education is bounded between zero and unity in each period 
t, from zero to infinity: 

 0˂ εt ˂1   in each   t ={0,1,2,…∞} (92) 
The above condition must be true because, if εt diverges to zero or unity in finite 

time, there is no equilibrium interest rate in the economy (there is no human capital 
accumulation or there is no demand for human capital and resources). Given that 
(92) must be true, the only case in which we can satisfy equation (92) with 0˂ εt ˂1 
in each t ={0,1,2,…∞} is that εt jumps at the steady state level ε   at time zero, and 
remains constant thereafter, thereby satisfying equation (89) by being stuck in the 
steady state (90). 

 
Remark 6 The propensity to invest in education is constant and equal to 

{ }= in each = 0,1,2,... ,t tε ε ∞  

whereε  is determined by equation (90).  
We can now derive the equilibrium growth rate of knowledge and, therefore, all 

the rest, as a function of ε  . 
2.5 Equilibrium growth rates and propensions to consume. Given the above result 
in Remark 6, we can calculate the growth rates of inputs and output as a function of 
parameters and of ε  : 

( ) ( )( )1 1 1 1= = 1 = 1 1 .t t t t

t t t t

H h hn n
H h h

µε+ + + ++ + +




  


  
    (93) 

Inserting this into (64) allows us to derive the constant growth rate of output: 

( )( )
1

1 1= 1 1 .t

t

Y n
Y

α
γ µε

αµ

−

+  +
+ + 

 





       (94) 

In conclusion, it is easy to substitute this result into (61) and in turn (62) to 
obtain the growth rate of resource use: 

equilibrium path is indeterminate because agents could start from any different ε0 and end up in 

the same place ( )0,1ε ∈ . 
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( )( )1 1= 1 1 .t

t

X n
X

γ µε
αµ

+ +
+ +





        (95) 

In order to fully characterize the CMA equilibrium we need also to calculate the 
propensities to consume of adult and old agents as functions of parameters and of 
ε  . Using the previous steps and recalling the aggregate constraint (72), I can 
calculate residually: 

( )( )
= ,

(1 ) 1 1

a
t t

t

N c
Y n

α
β µε+ + +



 
       (96) 

( ) ( )22
= .

(1 ) 1 1

o
t t

t

N d
Y n

βα

β µε+ + +



 

       (97) 

 
3.  Incomplete markets: full equilibrium characterization 

3.1 Consumer Problem. This consumer problem will of course look like a simpl-
ified version of the above one. The typical young agent born in period t−1 will now 
maximize utility (11) subject to (24), (25) and (26) taking ht−1 as given and using 
( )1, ,t t tc d s+  as control variables. The problem can again be simplified as follows. 
Substituting ht in (24) by means of (26) and using (25) to eliminate st from the 
resulting expression yields the lifetime budget constraint: 

1
1

1

= .
1

t
t t t

t

dc w h
i
+

−
+

+
+

         (98) 

Maximizing (11) subject to (98) using ( )1,t tc d +  as control variables, the Lag-

rangian reads 

( ) ( ) 1
1 1

1

,
1

t
t t t t t

t

dL v c v d w h c
i

β λ +
+ −

+

 
≡ + ⋅ + − − + 

 

and the first-order conditions = 0ct
L  and 

1
= 0dt

L
+

 yield equation (27) in the 

above text. 
3.2 Equilibrium characterization. As regards the aggregate budget of the economy, 
the allocation with incomplete markets IMA is characterized by 

# # # # #= ,a a
t t t t t t tN c w h N q A−         (99) 

( )# # #
1 1 1= 1 .o

t t t t tN d q A i+ + ++         (100) 
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Notice that setting (100) at time t and using the Hotelling rule (10), we have 
# # # # #= .o

t t t t t tN d q A p X+         (101) 

Hence, summing the aggregate consumption levels of adult and old agents, we 
obtain 

# # # # # #= ,a o a
t t t t t t t t tN c N d w h N p X+ +            (102) 

where we can substitute # # # # #=a
t t t t t tw h N p X Y+  in view of constant returns to scale, 

and write the aggregate expenditure constraint of the economy as 
# # #= .a o

t t t t tY N c N d+          (103) 

Total consumption of adult agents. Re-arranging terms in (100) we obtain 
#

# # 1 1
#

1

= ,
1

o
t t

t t
t

N dq A
i

+ +

++
         (104) 

which can be substituted in (99) to get 
#

# # #1
#

1

= .
1

t
t t t

t

dc w h
i
+

+

+
+

        (105) 

In the log-linear model, the utility function v(·)=ln(·) implies that the Euler con-
dition (27) reduces to 

#
#1

#
1

= ,
1

t
t

t

d c
i

β+

++
          (106) 

Substituting (106) in (105) yields 
# #

# = .
1

t t
t

w hc
β+

          (107) 

Notice that from (2), we obtain 
#

# # = .t
t t

t

Yw h α


          (108) 

Substituting (108) in (107), we obtain 

( )
#

# = .
1

t
t

t

Yc α
β+ 

         (109) 

Multiplying both sides of (109) by 1= =a y
t t tN N −  and rearranging we obtain 

the propensity to consume of adult agents 

( )
#

# = .
1

a
t t

t

N c
Y

α
β+

         (110) 

Now the propensity to consume of old agents. By merging (103) and (109) we 



R. IACONO, South-Eastern Europe Journal of Economics 2 (2014) 167-199 197 

 

have 

( )
#

# #= ,
1

a
ot t

t t t
t

N YY N dα
β

+
+ 

 

# #1 = ,
1

o
t t tY N dα

β
 
− + 

 

#

#

1= .
1

o
t t

t

N d
Y

β α
β

+ −
+

         (111) 

Set now (111) at t+1 and solving for #
1td +  gives: 

#
# 1

1
1

1= .
1

t
t o

t

Yd
N

β α
β

+
+

+

 + −
 + 

       (112) 

Inserting back again this result and (109) into (106) gives: 
( )#

# 1
1 #

1

11 11 = ,
1

a
t t

t o
t t

Y Ni
N Y

ββ α
β β α

+
+

+

+ + −
+  + 

     (113) 

#
# 1

1 #

11 = .t
t

t

Yi
Y

β α
αβ

+
+

 + −
+  

 
       (114) 

Keep this result in mind as I move to resource use and output growth rate. Sim-
ilarly as for the CMA allocation, from the profit-maximizing condition on resource 
use in (2), the Hotelling rule (10) can be rewritten as 

# #
1 1

# # #
1

1= .
1

t t

t t t

X Y
X Y i

γ+ +

+

+
⋅
+

           (115) 

Inserting (28) and (115) into the definition of the growth rate of output implies 
the following: 

1
#

1
# #

1

1= (1 ) .
1

t

t t

Y n
Y i

α
αγ
−

+

+

 +
+  + 

       (116) 

The growth rate of output 
#

1
#

t

t

Y
Y
+  appears to depend crucially on the ratio between 

resource regeneration and the interest rate. For levels of γ  such that 
1

1 < 1
1 ti

γ

+

+
+

, the 

growth rate of output might decrease. We are now just a few steps away from the 
final determination of the equilibrium interest rate and of the growth rates of the 
IMA. Recall (116) and substitute it into (114) to get: 
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( ) ( )1# 1 (1 )
1 = 1 .

n
i

α
αβ α

γ
αβ

− + − +
+ + 

 
           (117) 

Insert now (117) into (116) to get a final expression for the growth rate of the 
economy: 

( ) 1#
1

#

1
= (1 ) .

1
t

t

Y n
Y

α

α αβ γ
β α

−

+
 +

+  + − 
           (118) 

In conclusion, from the Hotelling rule rewritten as in (115) we obtain the resour-
ce use growth rate: 

( )
#

1
# = 1 .

1
t

t

X
X

αβ γ
β α

+ +
+ −

       (119) 
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